×

Arithmetic lattices and commensurator according to G. A. Margulis. (Réseaux arithmétiques et commensurateur d’après G. A. Margulis.) (French) Zbl 0833.22014

This paper is based on a theorem by G. A. Margulis allowing to decide when a lattice \(\Gamma\) in a semisimple Lie group \(G\) is arithmetic (supposing that \(G\) is connected, adjoint and without compact factors). The lattice \(\Gamma\) is a discrete subgroup of \(G\) such that \(\Gamma \in G\) has \(G\)-invariant finite volume. The concept of arithmeticity involves that of commensurability. Two subgroups \(G_1\) and \(G_2\) of \(G\) are commensurate if their intersection \(G_1 \cap G_2\) is of finite index in \(G_1\) and in \(G_2\). Commensurability is an equivalence relation. Considering now an algebraic semisimple group \(H\) defined on \(Q\), the group \(H_R\) of points with real coordinates and its subgroup \(H_Z\) of points with integral coordinates, then \(H_Z\) is a lattice in \(H_R\). Roughly speaking, the lattice \(\Gamma\) is arithmetic if it is commensurate with a properly defined homomorphic image of \(H_Z\) in \(G\). The point is that not all lattices \(\Gamma\) in \(G\) are arithmetic. One considers in \(G\) subgroups which are commensurate and conjugated to \(\Gamma\) and one defines the commensurator of \(\Gamma\) in \(G\) as the group given by \(\text{Comm}_G \Gamma = \{g \in G \mid g\Gamma g^{- 1} \sim \Gamma\}\) where “\(\sim\)” indicates commensurate equivalence. The theorem by Margulis says that a necessary and sufficient condition for \(\Gamma\) to be arithmetic is that the commensurator \(\text{Comm}_G \Gamma\) is dense in \(G\). The paper, written in honor of Armand Borel, analyzes this theorem, gives a proof and a canonical construction of the arithmeticity relation and formulates a number of alternative properties implying the arithmeticity of the lattice \(\Gamma\).

MSC:

22E40 Discrete subgroups of Lie groups

References:

[1] [Bai-Bor] Bailey, W.L., Borel, A.: Compactification of arithmetic quotients of bounded symmetric domains. Ann. Math.84, 442-528 (1966) · Zbl 0154.08602 · doi:10.2307/1970457
[2] [Ber] Berberian, S.: Measure and Integration. New York: Macmillan 1963
[3] [Ber-Zel] Bernstein, I.N., Zelevinski, A.V.: Representations of the Group GL(n,F) whereF is a Non-Archimedean Local Field. Russ. Math. Surv.31.3, 1-68 (1976) · Zbl 0348.43007 · doi:10.1070/RM1976v031n03ABEH001532
[4] [Bor1] Borel, A.: Density Properties for Certain Subgroups of Semisimple Lie Groups Without Compact Factors. Ann. Math.72, 179-188 (1960) · Zbl 0094.24901 · doi:10.2307/1970150
[5] [Bor2] Borel, A.: Density and maximality of arithmetic subgroups. J. Reine Angew. Math.224, 78-89 (1966) · Zbl 0158.03105 · doi:10.1515/crll.1966.224.78
[6] [Bor-H.C] Borel, A., Harish-Chandra: Arithmetic subgroups of algebraic groups. Ann. Math.75, 485-535 (1962) · Zbl 0107.14804 · doi:10.2307/1970210
[7] [Bou] Bourbaki, N.: Topological Vector Spaces. Springer: Berlin Heidelberg New York (1987), Chaps. 1-5.
[8] [Cor] Corlette, K.: Archimedean superrigidity and hyperbolic geometry. Ann. Math.135, 165-182 (1992) · Zbl 0768.53025 · doi:10.2307/2946567
[9] [Del-Mos] Deligne, P., Mostow, G.D.: Monodromy of hypergeometric functions and nonlattice integral monodromy. I.H.E.S. Publ. Math.63, 5-90 (1986) · Zbl 0615.22008
[10] [Edw] Edwards, R.E.: Functional Analysis. New York: Holt, Rinehart and Winston 1965 · Zbl 0126.11504
[11] [For-Pro] Formanek, E., Procesi, C.: The Automorphism Group of a Free Group Is Not Linear. J. Algebra149, 494-499 (1992) · Zbl 0780.20023 · doi:10.1016/0021-8693(92)90029-L
[12] [Fur1] Furstenberg, H.: A Poisson formula for semisimple Lie groups. Ann. Math.77, 335-383 (1963) · Zbl 0192.12704 · doi:10.2307/1970220
[13] [Fur2] Furstenberg, H.: Boundary Theory and Stochastic Processes in Homogeneous Spaces. In: Moore, C.C. (ed.) Harmonic analysis on homogeneous spaces. (Proc. Symp. on Pure and Appl. Math., vol. 26, Williamstown, Mass., 1972, pp. 193-229
[14] [Gar-Rag] Garland, H., Raghunathan, M.S.: Fundamental domains for lattices inR-rank 1, semisimple Lie groups. Ann. Math.92, 279-326 (1970) · Zbl 0206.03603 · doi:10.2307/1970838
[15] [Gre] Greenleaf, F.: Invariant Means on Topological Groups. Princeton: van Nostrand 1969 · Zbl 0174.19001
[16] [Gro-PS] Gromov, M., Piatetski-Shapiro, I.I.: Non-arithmetic groups in Lobachevsky spaces. I.H.E.S. Publ. Math.66, 93-103 (1988) · Zbl 0649.22007
[17] [Kaz1] Kazhdan, D.: Arithmetic varieties and their fields of quasi-definition. I.C.M.2, 321-325 (1970)
[18] [Kaz2] Kazhdan, D.: On arithmetic varieties. In: Gelfand, I.M. (ed.) Lie groups and their representations. Akadémiai Kiadó, Budapest 1975
[19] [Kaz3] Kazhdan, D.: On arithmetic varieties II. Isr. J. Math.44, 139-159 (1983) · Zbl 0543.14030 · doi:10.1007/BF02760617
[20] [Kaz4] Kazhdan, D.: Connection of the dual space of a group with the structure of its closed subgroups. Funct. Anal. Appl.1, 63-65 (1967) · Zbl 0168.27602 · doi:10.1007/BF01075866
[21] [Mañ] Mañé, R.: Teoria ergódica. IMPA, Projeto Euclides 1983 · Zbl 0581.28010
[22] [Mar1] Margulis, G.A.: Discrete Groups of Motions of Manifolds of Nonpositive Curvature. I.C.M.2, 21-34 (1974); A.M.S. Transl.109, 33-45 (1977)
[23] [Mar2] Margulis, G.A.: Arithmeticity of Irreducible Lattices in Semisimple Groups of Rank Greater than One. Invent. Math.76, 93-120 (1984) · Zbl 0551.20028 · doi:10.1007/BF01388494
[24] [Mar3] Margulis, G.A.: Discrete subgroups of semisimple Lie groups. Ergeb. Math. Grenzgebiete, 3. Folge, Bd. 17, Berlin Heidelberg New York: Springer 1991 · Zbl 0732.22008
[25] [Moo] Moore, C.C.: Ergodicity of flows on homogeneous spaces. Ann. J. Math.88, 154-178 (1966) · Zbl 0148.37902
[26] [Mos1] Mostow, G.D.: Lectures on discrete subgroups of Lie groups. Notes by Gopal Prasad. (Lect. Math. Phys., vol. 48, Bombay: Tata Institute 1969 · Zbl 0242.22012
[27] [Mos2] Mostow, G.D.: The Rigidity of Locally Symmetric Spaces. I.C.M.2, 187-197 (1970)
[28] [Mos3] Mostow, G.D.: Strong Rigidity of Locally Symmetric Spaces. Ann. Math. Stud., vol. 78, Princeton: Princeton University Press 1973 · Zbl 0265.53039
[29] [Mos4] Mostow, G.D.: On a remarkable class of polyhedra in complex hyperbolic space. Pac. J. Math.86, 171-276 (1980) · Zbl 0456.22012
[30] [Nor-Rag] Nori, M.V., Raghunathan, M.S.: On conjugation of locally symmetric arithmetic varieties. (Preprint) · Zbl 0842.14014
[31] [Pie] Pier, J.-P.: Amenable Locally Compact Groups. New York: Wiley 1984
[32] [PS-Saf] Piatetski-Shapiro, I.I., Safarevic: Izv. Akad. Nauk. S.S.S.R.30, 671-705 (1966)
[33] [Rag] Raghunathan, M.: Discrete Subgroups of Lie Groups. Berlin Heidelberg New York: Springer 1972 · Zbl 0254.22005
[34] [San] Sansuc, I.-I.: Groupe de Brauer et arithmétique des groupes algébriques linéaires sur un corps de nombres. J. Reine Angew. Math.327, 12-80 (1981) · Zbl 0468.14007 · doi:10.1515/crll.1981.327.12
[35] [Sav] Savin, G.: Limit multiplicities of cusp forms. Invent. Math.95, 149-159 (1989) · Zbl 0673.22003 · doi:10.1007/BF01394147
[36] [Sch] Schoen, R. (Preprint)
[37] [Ser] Serre, J.-P.: Lie Algebras and Lie Groups. Reading, Mass: Benjamin 1965
[38] [Zim] Zimmer, R.: Ergodic Theory and Semisimple Groups. Boston Basel Stuttgart: Birkhäuser 1984 · Zbl 0571.58015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.