×

Large deviation principles for first-order scalar conservation laws with stochastic forcing. (English) Zbl 1465.60025

Summary: In this paper, we established the Freidlin-Wentzell-type large deviation principles for first-order scalar conservation laws perturbed by small multiplicative noise. Due to the lack of the viscous terms in the stochastic equations, the kinetic solution to the Cauchy problem for these first-order conservation laws is studied. Then, based on the well-posedness of the kinetic solutions, we show that the large deviations holds by utilising the weak convergence approach.

MSC:

60F10 Large deviations
60H15 Stochastic partial differential equations (aspects of stochastic analysis)

References:

[1] Ammar, K., Wittbold, P. and Carrillo, J. (2006). Scalar conservation laws with general boundary condition and continuous flux function. J. Differential Equations 228 111-139. · Zbl 1103.35069 · doi:10.1016/j.jde.2006.05.002
[2] Boué, M. and Dupuis, P. (1998). A variational representation for certain functionals of Brownian motion. Ann. Probab. 26 1641-1659. · Zbl 0936.60059 · doi:10.1214/aop/1022855876
[3] Budhiraja, A. and Dupuis, P. (2000). A variational representation for positive functionals of infinite dimensional Brownian motion. Probab. Math. Statist. 20 39-61. · Zbl 0994.60028
[4] Dafermos, C. M. (2005). Hyperbolic Conservation Laws in Continuum Physics, 2nd ed. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 325. Springer, Berlin. · Zbl 1078.35001
[5] Debussche, A., Hofmanová, M. and Vovelle, J. (2016). Degenerate parabolic stochastic partial differential equations: Quasilinear case. Ann. Probab. 44 1916-1955. · Zbl 1346.60094 · doi:10.1214/15-AOP1013
[6] Debussche, A. and Vovelle, J. (2010). Scalar conservation laws with stochastic forcing. J. Funct. Anal. 259 1014-1042. · Zbl 1200.60050 · doi:10.1016/j.jfa.2010.02.016
[7] Debussche, A. and Vovelle, J. (2015). Invariant measure of scalar first-order conservation laws with stochastic forcing. Probab. Theory Related Fields 163 575-611. · Zbl 1331.60117 · doi:10.1007/s00440-014-0599-z
[8] Dupuis, P. and Ellis, R. S. (1997). A Weak Convergence Approach to the Theory of Large Deviations. Wiley Series in Probability and Statistics. Wiley, New York. · Zbl 0904.60001
[9] Feng, J. and Nualart, D. (2008). Stochastic scalar conservation laws. J. Funct. Anal. 255 313-373. · Zbl 1154.60052 · doi:10.1016/j.jfa.2008.02.004
[10] Flandoli, F. and Gatarek, D. (1995). Martingale and stationary solutions for stochastic Navier-Stokes equations. Probab. Theory Related Fields 102 367-391. · Zbl 0831.60072 · doi:10.1007/BF01192467
[11] Gyöngy, I. and Rovira, C. (2000). On \(L^p\)-solutions of semilinear stochastic partial differential equations. Stochastic Process. Appl. 90 83-108. · Zbl 1046.60059
[12] Kim, J. U. (2003). On a stochastic scalar conservation law. Indiana Univ. Math. J. 52 227-256. · Zbl 1037.60064 · doi:10.1512/iumj.2003.52.2310
[13] Lions, P.-L., Perthame, B. and Tadmor, E. (1994). A kinetic formulation of multidimensional scalar conservation laws and related equations. J. Amer. Math. Soc. 7 169-191. · Zbl 0820.35094 · doi:10.1090/S0894-0347-1994-1201239-3
[14] Mariani, M. (2007). Large deviations for stochastic conservation laws and their variational counterparts. Ph.D. thesis, Sapienza Univ. di Roma.
[15] Mariani, M. (2010). Large deviations principles for stochastic scalar conservation laws. Probab. Theory Related Fields 147 607-648. · Zbl 1204.60057 · doi:10.1007/s00440-009-0218-6
[16] Matoussi, A., Sabbagh, W. and Zhang, T. (2017). Large deviation principles of obstacle problems for quasilinear stochastic PDEs. Appl. Math. Optim. To appear. Available at arXiv:1712.02169. · Zbl 1470.60188
[17] Otto, F. (1996). Initial-boundary value problem for a scalar conservation law. C. R. Acad. Sci., Sér. 1 Math. 322 729-734. · Zbl 0852.35013
[18] Porretta, A. and Vovelle, J. (2003). \(L^1\) solutions to first order hyperbolic equations in bounded domains. Comm. Partial Differential Equations 28 381-408. · Zbl 1027.35066 · doi:10.1081/PDE-120019387
[19] Vallet, G. and Wittbold, P. (2009). On a stochastic first-order hyperbolic equation in a bounded domain. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 12 613-651. · Zbl 1194.60042 · doi:10.1142/S0219025709003872
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.