×

\(K\)-theoretic polynomials. (English) Zbl 1507.05102

Summary: We contribute to modern symmetric function theory, introducing two new bases of the polynomial ring and studying their relations to known bases. The quasiLascoux basis is a \(K\)-theoretic deformation of the quasikey basis that is also a nonsymmetric lift of quasiGrothendieck polynomials. We give positive expansions of this new basis into the glide and Lascoux atom bases, as well as of the Lascoux basis into this new basis. These results include the first proof that quasiGrothendieck polynomials expand positively in the multifundamental quasisymmetric polynomials of T. Lam and P. Pylyavskyy [Int. Math. Res. Not. 2007, No. 24, Article ID rnm125, 48 p. (2007; Zbl 1134.16017)]. The kaons are \(K\)-theoretic deformations of fundamental particles. We give positive expansions of the glide and Lascoux atom bases into this new kaon basis. Throughout, we explore parallels between these \(K\)-analogues and their cohomological counterparts.

MSC:

05E05 Symmetric functions and generalizations
05E10 Combinatorial aspects of representation theory

Citations:

Zbl 1134.16017

References:

[1] S. Assaf and D. Searles. “Schubert polynomials, slide polynomials, Stanley symmetric functions and quasi-Yamanouchi pipe dreams”.Adv. Math.306(2017), pp. 89-122.Link. · Zbl 1356.14039
[2] S. Assaf and D. Searles. “Kohnert tableaux and a lifting of quasi-Schur functions”.J. Combin. Theory Ser. A156(2018), pp. 85-118.Link. · Zbl 1381.05084
[3] M. Demazure. “Une nouvelle formule des caractères”.Bull. Sci. Math. (2)98.3 (1974), pp. 163-172. · Zbl 0365.17005
[4] S. Fomin and A. Kirillov. “Grothendieck polynomials and the Yang-Baxter equation”.Proceedings of FPSAC’94. DIMACS, Piscataway, NJ, 1994, pp. 183-190.
[5] I. Gessel. “MultipartiteP-partitions and inner products of skew Schur functions”.Combinatorics and Algebra (Boulder, Colo., 1983). Contemp. Math. 34. Amer. Math. Soc., Providence, RI, 1984, pp. 289-317. · Zbl 0562.05007
[6] J. Haglund, K. Luoto, S. Mason, and S. van Willigenburg. “Quasisymmetric Schur functions”.J. Combin. Theory Ser. A118.2 (2011), pp. 463-490.Link. · Zbl 1229.05270
[7] J. Haglund, K. Luoto, S. Mason, and S. van Willigenburg. “Refinements of the LittlewoodRichardson rule”.Trans. Amer. Math. Soc.363.3 (2011), pp. 1665-1686.Link. · Zbl 1229.05269
[8] T. Hudson. “A Thom-Porteous formula for connectiveK-theory using algebraic cobordism”.J. K-Theory14.2 (2014), pp. 343-369.Link. · Zbl 1314.14015
[9] A. N. Kirillov. “Notes on Schubert, Grothendieck and key polynomials”.SIGMA Symmetry Integrability Geom. Methods Appl.12(2016), Paper No. 034, 57 pp.Link. · Zbl 1334.05176
[10] T. Lam and P. Pylyavskyy. “Combinatorial Hopf algebras andK-homology of Grassmannians”.Int. Math. Res. Not. IMRN24 (2007), Art. ID rnm125, 48 pp.Link. · Zbl 1134.16017
[11] A. Lascoux. “Transition on Grothendieck polynomials”.Physics and Combinatorics, 2000 (Nagoya). World Sci. Publ., River Edge, NJ, 2001, pp. 164-179.Link. · Zbl 1052.14059
[12] A. Lascoux. “Polynomials”. Unpublished notes. 2013.Link.
[13] A. Lascoux and M.-P. Schützenberger. “Structure de Hopf de l’anneau de cohomologie et de l’anneau de Grothendieck d’une variété de drapeaux”.C. R. Acad. Sci. Paris Sér. I Math. 295.11 (1982), pp. 629-633. · Zbl 0542.14030
[14] A. Lascoux and M.-P. Schützenberger. “Keys & standard bases”.Invariant Theory and Tableaux (Minneapolis, MN, 1988). IMA Vol. Math. Appl. 19. Springer, New York, 1990, pp. 125-144. · Zbl 0815.20013
[15] S. Mason. “An explicit construction of type A Demazure atoms”.J. Algebraic Combin.29.3 (2009), pp. 295-313.Link. · Zbl 1210.05175
[16] C. Monical. “Set-Valued Skyline Fillings”. 2016.arXiv:1611.08777.
[17] C. Monical, O. Pechenik, and T. Scrimshaw. “Crystal structures for symmetric Grothendieck polynomials”. 2018.arXiv:1807.03294. · Zbl 1436.05131
[18] C. Monical, O. Pechenik, and D. Searles. “Polynomials from combinatorialK-theory”. 2018. arXiv:1806.03802. · Zbl 1456.05171
[19] O. Pechenik and D. Searles. “Decompositions of Grothendieck Polynomials”. To appear in Int. Math. Res. Not.2017.arXiv:1611.02545. · Zbl 1441.05228
[20] V. Reiner and M. Shimozono. “Key polynomials and a flagged Littlewood-Richardson rule”.J. Combin. Theory Ser. A70.1 (1995), pp. 107-143.Link. · Zbl 0819.05058
[21] C. Ross and A. Yong. “Combinatorial rules for three bases of polynomials”.Sém. Lothar. Combin.74(2015), Art. B74a, 11 pp.Link. · Zbl 1328.05200
[22] D.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.