×

Fractional weak adversarial networks for the stationary fractional advection dispersion equations. (English) Zbl 07920854

Summary: In this article, we propose the fractional weak adversarial networks (f-WANs) for the stationary fractional advection dispersion equations based on their weak formulas. This enables us to handle less regular solutions for the fractional equations. To handle the non-local property of the fractional derivatives, convolutional layers and special loss functions are introduced in this neural network. Numerical experiments for both smooth and less regular solutions show the validity of f-WANs.

MSC:

35R11 Fractional partial differential equations
35B65 Smoothness and regularity of solutions to PDEs
34A08 Fractional ordinary differential equations

Software:

FPINNs; DGM; TensorFlow

References:

[1] Abadi, M.; Barham, P.; Chen, J., Tensorflow: a system for large-scale machine learning, Osdi, 16, 265-283, 2016
[2] Adams, RA; Fournier, JJ, Sobolev spaces, 2003, Netherlands: Elsevier, Netherlands
[3] Chen, W., A speculative study of 2/3-order fractional Laplacian modeling of turbulence: some thoughts and conjectures, Chaos, 16, 2, 2006 · Zbl 1146.37312 · doi:10.1063/1.2208452
[4] Ervin, VJ; Roop, JP, Variational formulation for the stationary fractional advection dispersion equation, Numer. Methods Partial Differ. Equ., 22, 3, 558-576, 2006 · Zbl 1095.65118 · doi:10.1002/num.20112
[5] Ervin, VJ; Roop, JP, Variational solution of fractional advection dispersion equations on bounded domains in \(R^d\), Numer. Methods Partial Differ. Equ., 23, 2, 256-281, 2007 · Zbl 1117.65169 · doi:10.1002/num.20169
[6] Yu, B., The deep Ritz method: a deep learning-based numerical algorithm for solving variational problems, Commun. Math. Stat., 1, 6, 1-12, 2018 · Zbl 1392.35306
[7] Fan, Y.; Bohorquez, CO; Ying, L., BCR-Net: a neural network based on the nonstandard wavelet form, J. Comput. Phys., 384, 1-15, 2019 · Zbl 1451.65244 · doi:10.1016/j.jcp.2019.02.002
[8] Fan, Y.; Lin, L.; Zepeda-Núnez, L., A multiscale neural network based on hierarchical matrices, Multiscale Model. Simul., 17, 4, 1189-1213, 2019 · Zbl 1435.65181 · doi:10.1137/18M1203602
[9] Guo, L.; Wu, H.; Yu, X.; Zhou, T., Monte Carlo fPINNs: deep learning method for forward and inverse problems involving high dimensional fractional partial differential equations, Comput. Method. Appl. M, 400, 2022 · Zbl 1507.65012 · doi:10.1016/j.cma.2022.115523
[10] Jin, B.; Rundell, W., A tutorial on inverse problems for anomalous diffusion processes, Inverse Probl., 31, 3, 2015 · Zbl 1323.34027 · doi:10.1088/0266-5611/31/3/035003
[11] Khoo, Y.; Lu, J.; Ying, L., Solving parametric PDE problems with artificial neural networks, Eur. J. Appl. Math., 32, 3, 421-435, 2021 · Zbl 1501.65154 · doi:10.1017/S0956792520000182
[12] Khoo, Y.; Ying, L., SwitchNet: a neural network model for forward and inverse scattering problems, SIAM J. Sci. Comput., 41, 5, A3182-A3201, 2019 · Zbl 1425.65208 · doi:10.1137/18M1222399
[13] Kilbas, AA; Srivastava, HM; Trujillo, JJ, Theory and applications of fractional differential equations, 2006, Netherlands: Elsevier, Netherlands · Zbl 1092.45003
[14] Kingma, D. P., Ba, J.: Adam: A method for stochastic optimization. (2014), arXiv:1412.6980
[15] Kubica, A.; Ryszewska, K.; Yamamoto, M., Time-Fractional Differential Equations: A Theoretical Introduction, 2020, Singapore: Springer, Singapore · Zbl 1485.34002 · doi:10.1007/978-981-15-9066-5
[16] Li, Y.; Lu, J.; Mao, A., Variational training of neural network approximations of solution maps for physical models, J. Comput. Phys., 409, 2020 · Zbl 1435.68292 · doi:10.1016/j.jcp.2020.109338
[17] Long, Z.; Lu, Y.; Ma, X.; Dong, B., PDE-Net: Learning PDEs from Data, Proc. Mach. Learn. Res., 80, 3208-3216, 2018
[18] Mainardi, F., Fractional calculus and waves in linear viscoelasticity: an introduction to mathematical models, 2010, Singapore: World Scientific, Singapore · Zbl 1210.26004 · doi:10.1142/p614
[19] Metzler, R.; Klafter, J., The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339, 1, 1-77, 2000 · Zbl 0984.82032 · doi:10.1016/S0370-1573(00)00070-3
[20] Nabian, MA; Meidani, H., A deep learning solution approach for high-dimensional random differential equations, Probabilistic Eng. Mech., 57, 14-25, 2019 · doi:10.1016/j.probengmech.2019.05.001
[21] Di Nezza, E.; Palatucci, G.; Valdinoci, E., Hitchhiker’s guide to the fractional Sobolev spaces, B. SCI. MATH., 136, 5, 521-573, 2012 · Zbl 1252.46023 · doi:10.1016/j.bulsci.2011.12.004
[22] Pang, G.; Lu, L.; Karniadakis, GE, fPINNs: fractional physics-informed neural networks, SIAM J. Sci. Comput., 41, 4, A2603-A2626, 2019 · Zbl 1420.35459 · doi:10.1137/18M1229845
[23] Podlubny, I., Fractional Differential Equations, 1999, New York: Academic Press, New York · Zbl 0924.34008
[24] Raissi, M.; Perdikaris, P.; Karniadakis, GE, Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, J. Comput. Phys., 378, 686-707, 2019 · Zbl 1415.68175 · doi:10.1016/j.jcp.2018.10.045
[25] Roop, JP, Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in \(R^2\), J. Comput. Appl. Math., 193, 1, 243-268, 2006 · Zbl 1092.65122 · doi:10.1016/j.cam.2005.06.005
[26] Shan, T.; Tang, W.; Dang, X., Study on a fast solver for Poisson’s equation based on deep learning technique, IEEE Trans. Antennas Propag., 68, 9, 6725-6733, 2020 · doi:10.1109/TAP.2020.2985172
[27] Shlesinger, MF; West, BJ; Klafter, J., Lévy dynamics of enhanced diffusion: application to turbulence, Phys. Rev. Lett., 58, 11, 1100, 1987 · doi:10.1103/PhysRevLett.58.1100
[28] Sirignano, J.; Spiliopoulos, K., DGM: a deep learning algorithm for solving partial differential equations, J. Comput. Phys., 375, 1339-1364, 2018 · Zbl 1416.65394 · doi:10.1016/j.jcp.2018.08.029
[29] Wang, H.; Yang, D.; Zhu, S., Inhomogeneous Dirichlet boundary-value problems of space-fractional diffusion equations and their finite element approximations, SIAM J. Numer. Anal., 52, 3, 1292-1310, 2014 · Zbl 1320.65182 · doi:10.1137/130932776
[30] Weilbeer, M.: Efficient numerical methods for fractional differential equations and their analytical background. Techn. Univ., Diss., Braunschweig (2005) · Zbl 1104.26012
[31] Zang, Y.; Bao, G.; Ye, X.; Zhou, H., Weak adversarial networks for high-dimensional partial differential equations, J. Comput. Phys., 411, 2020 · Zbl 1436.65156 · doi:10.1016/j.jcp.2020.109409
[32] Zhuang, P.; Liu, F.; Anh, V.; Turner, I., Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term, SIAM J. Numer. Anal., 47, 3, 1760-1781, 2009 · Zbl 1204.26013 · doi:10.1137/080730597
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.