×

Topological quantum phase transitions of anisotropic antiferromagnetic Kitaev model driven by magnetic field. (English) Zbl 07769777

Summary: The evolution of quantum spin liquid states (QSL) of the anisotropic antiferromagnetic (AFM) Kitaev model with the [001] magnetic field by utilizing the finite-temperature Lanczos method (FTLM) is investigated. In this anisotropic Kitaev model with \(K_X = K_Y\) and \(K_X + K_Y + K_Z = -3\mathrm{K}\) (K is the energy unit), due to the competition between anisotropy and magnetic field, the system emerges four exotic quantum phase transitions (QPTs) when \(K_Z = -1.8\) and \(-1.4\) K, while only two QPTs when \(K_Z=-0.6\) K. At these magnetic-field tuning quantum phase transition points, the low-energy excitation spectrums appear level crossover, and the specific heat, magnetic susceptibility and Wilson ratio display anomalies; accordingly, the topological Chern number may also change. These results demonstrate that the anisotropic interacting Kitaev model with modulating magnetic field displays more rich phase diagrams, in comparison with the isotropic Kitaev model.
© 2022 Wiley-VCH GmbH

MSC:

81-XX Quantum theory
Full Text: DOI

References:

[1] A.Kitaev, Ann. Phys. (N. Y.)2006, 321, 2. · Zbl 1125.82009
[2] D.Pesin, L.Balents, Nat. Phys.2010, 6, 376.
[3] S.Trebst, arXiv:1701.07056, 2017.
[4] Y.Singh, P.Gegenwart, Phys. Rev. B2010, 82, 064412.
[5] I.Kimchi, R.Coldea, A.Vishwanath, Phys. Rev. B2015, 91, 245134.
[6] K. W.Plumb, J. P.Clancy, L. J.Sandilands, V. V.Shankar, Y. F.Hu, K. S.Burch, H.‐Y.Kee, Y.‐J.Kim, Phys. Rev. B2014, 90, 041112(R).
[7] G.Khaliullin, Prog. Theor. Phys. Suppl.2005, 160, 155.
[8] G.Jackeli, G.Khaliullin, Phys. Rev. Lett.2009, 102, 017205.
[9] Y.Yamaji, Y.Nomura, M.Kurita, R.Arita, M.Imada, Phys. Rev. Lett.2014, 113, 107201.
[10] T.Suzuki, T.Yamada, Y.Yamaji, S.‐I.Suga, Phys. Rev. B2015, 92, 184411.
[11] Y.Yamaji, T.Suzuki, T.Yamada, S.‐I.Suga, N.Kawashima, M.Imada, Phys. Rev. B2016, 93, 174425.
[12] S. K.Choi, R.Coldea, A. N.Kolmogorov, T.Lancaster, I. I.Mazin, S. J.Blundell, P. G.Radaelli, Y.Singh, P.Gegenwart, K. R.Choi, S.‐W.Cheong, P. J.Baker, C.Stock, J.Taylor, Phys. Rev. Lett.2012, 108, 127204.
[13] A.Banerjee, C. A.Bridges, J.‐Q.Yan, A. A.Acze, L.Li, M. B.Stone, G. E.Granroth, M. D.Lumsden, Y.Yiu, J.Knolle, S.Bhattacharjee, D. L.Kovrizhin, D. A. T. R.Moessner, D. G.Mandrus, S. E.Nagler, Nat. Mater.2016, 15, 733.
[14] X.Liu, T.Berlijn, W.‐G.Yin, W.Ku, A.Tsvelik, Y.‐J.Kim, H.Gretarsson, Y.Singh, P.Gegenwart, J. P.Hill, Phys. Rev. B2011, 83, 220403(R).
[15] C.Hickey, S.Trebst, Nat. Commun.2019, 10, 530.
[16] M.‐H.Jiang, S.Liang, W.Chen, Y.Qi, J.‐X.Li, Q.‐H.Wang, Phys. Rev. Lett.2020, 125, 177203.
[17] S.Liang, M.‐H.Jiang, W.Chen, J.‐X.Li, Q.‐H.Wang, Phys. Rev. B2018, 98, 054433.
[18] J.Nasu, Y.Kato, Y.Kamiya, Y.Motome, Phys. Rev. B2018, 98, 060416(R).
[19] Z.‐X.Liu, B.Normand, Phys. Rev. Lett.2018, 120, 187201.
[20] L.Komzsik, The Lanczos Methods: Evolution and Application, Society for Industrial and Applied Mathematics, Philadelphia, PA2003. · Zbl 1022.65038
[21] P.Prelovšek, J.Bonča, Strongly Correlated Systems: Numerical Methods, Springer‐Verlag, Heidelberg, Berlin2013.
[22] J.Jaklič, P.Prelovšek, Phys. Rev. B1994, 49, 5065.
[23] H. C.Po, L.Fidkowski, A.Vishwanath, A. C.Potter, Phys. Rev. B2017, 96, 245116.
[24] I. C.Fulga, M.Maksymenko, M. T.Rieder, N. H.Lindner, E.Berg, Phys. Rev. B2019, 99, 235408.
[25] P.Molignini, A. G.Celades, R.Chitra, W.Chen, Phys. Rev. B2021, 103, 184507.
[26] C.‐S.Xu, J.‐S.Feng, H.‐J.Xiang, L.Bellaiche, npj Comput. Mater.2018, 4, 57.
[27] S.‐J.Gu, S.‐S.Deng, Y.‐Q.Li, H.‐Q.Lin, Phys. Rev. Lett.2004, 93, 086402.
[28] See to this publication.
[29] N.Read, B.Chakraborty, Phys. Rev. B1989, 40, 7133.
[30] A.Kitaev, Ann. Phys. (N. Y.)2003, 303, 2. · Zbl 1012.81006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.