×

A second-order low-regularity correction of Lie splitting for the semilinear Klein-Gordon equation. (English) Zbl 1516.65106

Summary: The numerical approximation of nonsmooth solutions of the semilinear Klein-Gordon equation in the \(d\)-dimensional space, with \(d = 1\), \(2\), \(3\), is studied based on the discovery of a new cancellation structure in the equation. This cancellation structure allows us to construct a low-regularity correction of the Lie splitting method (i.e., exponential Euler method), which can significantly improve the accuracy of the numerical solutions under low-regularity conditions compared with other second-order methods. In particular, the proposed time-stepping method can have second-order convergence in the energy space under the regularity condition \((u, \partial_t u) \in L^\infty (0,T; H^{1 + \frac{d}{4}} \times H^{\frac{d}{4}})\). In one dimension, the proposed method is shown to have almost \(\frac{4}{3}\)-order convergence in \(L^\infty (0, T; H^1 \times L^2)\) for solutions in the same space, i.e., no additional regularity in the solution is required. Rigorous error estimates are presented for a fully discrete spectral method with the proposed low-regularity time-stepping scheme. The numerical experiments show that the proposed time-stepping method is much more accurate than previously proposed methods for approximating the time dynamics of nonsmooth solutions of the semilinear Klein-Gordon equation.

MSC:

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
76D05 Navier-Stokes equations for incompressible viscous fluids
35Q30 Navier-Stokes equations
35Q53 KdV equations (Korteweg-de Vries equations)

References:

[1] W. Bao and L. Yang, Efficient and accurate numerical methods for the Klein-Gordon-Schrödinger equations. J. Comput. Phys. 225 (2007) 1863-1893. · Zbl 1125.65093 · doi:10.1016/j.jcp.2007.02.018
[2] W. Bao, Y. Feng and C. Su, Uniform error bounds of time-splitting spectral methods for the long-time dynamics of the nonlinear Klein-Gordon equation with weak nonlinearity. Math. Comp. 91 (2022) 811-842. · Zbl 07473345
[3] A. Barone, F. Esposito and C.J. Magee, Theory and applications of the sine-gordon equation. La Rivista del Nuovo Cimento 1 (1971) 227-267.
[4] Y. Bruned and K. Schratz, Resonance based schemes for dispersive equations via decorated trees, in Forum of Mathematics, Pi. Vol. 10. Cambridge University Press (2022) E2. · Zbl 1504.65168 · doi:10.1017/fmp.2021.13
[5] S. Buchholz, B. Dörich and M. Hochbruck, On averaged exponential integrators for semilinear Klein-Gordon equations with solutions of low-regularity. SN Part. Differ. Equ. Appl. 2 (2021) 2662-2963.
[6] W. Cao, D. Li and Z. Zhang, Unconditionally optimal convergence of an energy-conserving and linearly implicit scheme for nonlinear Klein-Gordon equations. Sci. China Math. 65 (2021) 1731-1748. · Zbl 1493.65147
[7] C. Chen, J. Hong, C. Sim and K. Sonwu, Energy and quadratic invariants preserving (EQUIP) multi-symplectic methods for Hamiltonian Klein-Gordon equations. J. Comput. Phys. 418 (2020) 10959.
[8] D. Cohen, E. Hairer and C. Lubich, Conservation of energy, momentum and actions in numerical discretizations of non-linear wave equations. Numer. Math. 110 (2008) 113-143. · Zbl 1163.65066
[9] P. Deuflhard, A study of extrapolation methods based on multistep schemes without parasitic solutions. Z. Angew. Math. Phys. 30 (1979) 177-189. · Zbl 0406.70012
[10] B. García-Archilla, J.M. Sanz-Serna and R.D. Skeel, Long-time-step methods for oscillatory differential equations. SIAM J. Sci. Comput. 20 (1998) 930-963. · Zbl 0927.65143
[11] L. Gauckler, Error analysis of trigonometric integrators for semilinear Klein-Gordon equations. SIAM J. Numer. Anal. 53 (2015) 1082-1106. · Zbl 1457.65076
[12] R. Glowinski and A. Quaini, On the numerical solution to a nonlinear wave equation associated with the first Painlevé equation: an operator-splitting approach, in Partial Differential Equations: Theory, Control and Approximation, Springer, Dordrecht (2014) 243-264. · Zbl 1318.65066
[13] V. Grimm and M. Hochbruck, Error analysis of exponential integrators for oscillatory second-order differential equations. J. Phys. A 39 (2006) 5495-5507. · Zbl 1093.65078
[14] E. Hairer and C. Lubich, Long-time energy conservation of numerical methods for oscillatory differential equations. SIAM J. Numer. Anal. 38 (2000) 414-441. · Zbl 0988.65118
[15] E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd edition. Springer (2006). · Zbl 1094.65125
[16] E. Hansen and A. Ostermann, High-order splitting schemes for semilinear evolution equations. BIT Numer. Math. 56 (2016) 1303-1316. · Zbl 1355.65071 · doi:10.1007/s10543-016-0604-2
[17] M. Hochbruck and J. Leibold, An implicit-explicit time discretization scheme for second-order semilinear Klein-Gordon equations with application to dynamic boundary conditions. Numer. Math. 147 (2021) 869-899. · Zbl 1464.65086
[18] M. Hochbruck and C. Lubich, A Gautschi-type method for oscillatory second-order differential equations. Numer. Math. 83 (1999) 403-426. · Zbl 0937.65077
[19] M. Hofmanová and K. Schratz, An exponential-type integrator for the KdV equation. Numer. Math. 136 (2017) 1117-1137. · Zbl 1454.65034
[20] W. Layton, Y. Li and C. Trenchea, Recent developments in IMEX methods with time filters for systems of evolution equations. J. Comput. Appl. Math. 299 (2016) 50-67. · Zbl 1333.65100 · doi:10.1016/j.cam.2015.09.038
[21] D. Li and W. Sun, Linearly implicit and high-order energy-conserving schemes for nonlinear Klein-Gordon equations. J. Sci. Comput. 83 (2020) 65. · Zbl 1442.65220
[22] J. Li and M.R. Visbal, High-order compact schemes for nonlinear dispersive waves. J. Sci. Comput. 26 (2006) 1-23. · Zbl 1089.76043
[23] Y. Li, Y. Wu and F. Yao, Convergence of an embedded exponential-type low-regularity integrators for the KdV equation without loss of regularity. Ann. Appl. Math. 37 (2021) 1-21. · Zbl 1488.65366 · doi:10.4208/aam.OA-2020-0001
[24] B. Li, S. Ma and K. Schratz, A semi-implicit low-regularity integrator for Navier-Stokes equations. SIAM J. Numer. Anal. 60 (2022) 2273-2292. · Zbl 1503.65237
[25] D. Murai and T. Koto, Stability and convergence of staggered Runge-Kutta schemes for semilinear Klein-Gordon equations. J. Comput. Appl. Math. 235 (2011) 4251-4264. · Zbl 1260.65086 · doi:10.1016/j.cam.2011.03.020
[26] A. Ostermann and K. Schratz, Low regularity exponential-type integrators for semilinear Schrödinger equations. Found. Comput. Math. 18 (2018) 731-755. · Zbl 1402.65098 · doi:10.1007/s10208-017-9352-1
[27] A. Ostermann, F. Rousset and K. Schratz, Fourier integrator for periodic NLS: low regularity estimates via discrete Bourgain spaces. J. Eur. Math. Soc. (2022). DOI: 10.4171/jems/1275.
[28] R. Qi and X. Wang, Error estimates of finite element method for semilinear stochastic strongly damped Klein-Gordon equation. IMA J. Numer. Anal. 39 (2019) 1594-1626. · Zbl 1466.65143 · doi:10.1093/imanum/dry030
[29] A. Quaini and R. Glowinski, Splitting methods for some nonlinear wave problems, in Splitting Methods in Communication, Imaging, Science, and Engineering, Scientific Computation Series. Springer, Cham (2016) 643-676. · Zbl 1372.65274
[30] Z. Rong and C. Xu, Numerical approximation of acoustic waves by spectral element methods. Appl. Numer. Math. 58 (2008) 999-1016. · Zbl 1139.76043 · doi:10.1016/j.apnum.2007.04.008
[31] F. Rousset and K. Schratz, A general framework of low-regularity integrators. SIAM J. Numer. Anal. 59 (2021) 1735-1768. · Zbl 1486.65127
[32] G. Strang, On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5 (1968) 506-517. · Zbl 0184.38503
[33] B. Wang and X. Wu, The formulation and analysis of energy-preserving schemes for solving high-dimensional nonlinear Klein-Gordon equations. IMA J. Numer. ANal. 39 (2019) 2016-2044. · Zbl 1496.65188 · doi:10.1093/imanum/dry047
[34] B. Wang and X. Wu, Global error bounds of one-stage extended RKN integrators for semilinear Klein-Gordon equations. Numer. Algorithm 81 (2019) 1203-1218. · Zbl 1422.65229
[35] Y. Wang and X. Zhao, A symmetric low-regularity integrator for nonlinear Klein-Gordon equation. Math. Comp. 91 (2022) 2215-2245. · Zbl 1498.65178
[36] Y. Wu and X. Zhao, Optimal convergence of a first order low-regularity integrator for the KdV equation. IMA J. Numer. Anal. 42 (2022) 3499-3528. · Zbl 07607705 · doi:10.1093/imanum/drab054
[37] Y. Wu and X. Zhao, Embedded exponential-type low-regularity integrators for KdV equation under rough data. BIT Numer. Math. 62 (2022) 1049-1090. · Zbl 07569617 · doi:10.1007/s10543-021-00895-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.