×

Theoretical and experimental study of the third-order nonlinearity parameter C/A for biological media. (English) Zbl 1115.35364

Summary: The third-order nonlinearity parameter C/A for biological media is studied theoretically and experimentally. Based on the theory of fluid dynamics, the generalized Burgers equation is extended to the third order for biological media. A perturbation solution of the equation is carried out and the formula for C/A for biological media is derived. The sound pressure of the third harmonics changing with distance in water is measured and compared with the theoretical results. An experimental set-up is established for measurement of C/A for biological media and the values of the acoustic nonlinearity parameter C/A are measured for several porcine samples. The results show that the values of C/A for the measured biological tissues are in the range of 60.0–120.0 while the values B/A for the measured biological tissues are in the range 6.5– 11.0. The maximum relative deviation for C/A among the measured biological tissues is 81.2% while it is only 66.2% for B/A. Therefore, C/A may be more appropriate for tissue characterization compared with B/A.

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
74E25 Texture in solid mechanics
Full Text: DOI

References:

[1] Carstensen, E. L.; Law, W. K.; Mckay, N. D.; Muir, T. G., Demonstration of nonlinear acoustical effects at biomedical frequencies and intensities, Ultrasound Med. Biol., 6, 359-368 (1980)
[2] Muir, T. G.; Carstensen, E. L., Prediction of nonlinear acoustic effects at biological frequencies and intensities, Ultrasound Med. Biol., 6, 345-357 (1980)
[3] F. Dunn, W.K. Law, L.A. Frizzell, Nonlinear ultrasonic wave propagation in biological materials, in: IEEE Ultrasonics Symposium, 1981, pp. 527-532; F. Dunn, W.K. Law, L.A. Frizzell, Nonlinear ultrasonic wave propagation in biological materials, in: IEEE Ultrasonics Symposium, 1981, pp. 527-532
[4] Law, W. K.; Frizzell, L. A.; Dunn, F., Ultrasonic determination of the nonlinearity parameter B/A for biological media, J. Acoust. Soc. Amer., 69, 4, 1210-1212 (1981)
[5] Sehgal, C. M.; Bahn, R. C.; Greenleaf, J. F., Measurement of the acoustic nonlinearity parameter B/A in human tissues by a thermodynamic method, J. Acoust. Soc. Amer., 76, 4, 1023-1029 (1984)
[6] Gong, X. F.; Feng, R.; Zhu, Z. Y., Ultrasonic investigation of the nonlinearity parameter B/A in biological media, J. Acoust. Soc. Amer., 76, 3, 949-950 (1984)
[7] Bjørnø, L.; Lewin, P. A., Measurement of nonlinear acoustic parameter in tissue, (Greenleaf, J. F., Tissue Characterization with Ultrasound (1986), CRC Press), 141-163
[8] Gong, X. F.; Zhu, Z. M.; Shi, T.; Huang, J. H., Determination of nonlinearity parameter for biological tissues using FAIS and ITD methods, J. Acoust. Soc. Amer., 86, 1, 1-5 (1989)
[9] Zhang, J.; Kuhlenschmidt, M.; Dunn, F., Influences of structural factors of biological media on the acoustic nonlinearity parameter B/A, J. Acoust. Soc. Amer., 89, 1, 80-91 (1991)
[10] Law, W. K.; Frizzell, L. A.; Dunn, F., Determination of the nonlinearity parameter B/A of biological media, Ultrasound Med. Biol., 11, 2, 307-318 (1985)
[11] Sehgal, C. M.; Brown, G. M.; Bahn, R. C.; Greenleaf, J. F., Measurement and use of acoustic nonlinearity and sound speed to estimate composition of excited livers, Ultrasound Med. Biol., 12, 11, 865-874 (1986)
[12] Ichida, N.; Sato, T.; Linzer, M., Imaging the nonlinear ultrasonic parameter of a medium, Ultrason. Imaging, 5, 295-299 (1983)
[13] Nakagawa, Y.; Hou, W.; Cai, A.; Arnold, N.; Wade, G., Nonlinear parameter imaging with finite-amplitude sound waves, Ultrason. Symp., 901-904 (1986)
[14] Cain, C. A., Ultrasonic reflection mode imaging of the nonlinear parameter B/A: I. A theoretical basis, J. Acoust. Soc. Amer., 80, 1, 28-32 (1986)
[15] Cain, C. A.; Nishiyama, H.; Katakura, K., An ultrasonic method for measurement of the nonlinear parameter B/A in fluid-like media, J. Acoust. Soc. Amer., 80, 2, 685-688 (1986)
[16] Zhang, D.; Gong, X. F.; Ye, S. G., Acoustic nonlinearity parameter tomography for biological specimens via measurement of the second harmonics, J. Acoust. Soc. Amer., 99, 4, 2397-2402 (1996)
[17] Gong, X. F.; Zhang, D.; Liu, J. H., Study of acoustic nonlinearity parameter imaging methods in reflection mode for biological tissue, J. Acoust. Soc. Amer., 116, 3, 1819-1826 (2004)
[18] Bouakaz, A.; Kernning, B. J.; Veletter, W. B.; Ten Cate, F. J.; de Jong, N., Contrast superharmonic imaging: A feasibility study, Ultrasound Med. Biol., 29, 4, 547-553 (2003)
[19] Bouakaz, A.; de Jong, N., Native tissue imaging at superharmonic frequencies, IEEE Trans. Ultrason. Ferroelectr. Freq. Control., 50, 5, 496-506 (2003)
[20] Ma, Q. Y.; Zhang, D.; Gong, X. F.; Ma, Y., Investigation of superharmonic sound propagation and imaging in biological tissues in vitro, J. Acoust. Soc. Amer., 119, 4, 2518-2523 (2006)
[21] Ma, Q. Y.; Gong, X. F.; Zhang, D.; Ma, Y., Investigation on phase-coded third harmonic imaging for normal and pathological tissues in transmission mode in vitro, Chinese Sci. Bull., 51, 10, 1180-1184 (2006)
[22] Bjørnø, L.; Black, K., High-order acoustic nonlinearity parameters of fluids, (Nigul, U.; Engelbrecht, J., Nonlinear Deformation Waves (1983), Springer Verlag: Springer Verlag Berlin), 355-360
[23] Blackstock, D. T., Generalized Burgers equation for plane waves, J. Acoust. Soc. Amer., 77, 6, 2050-2053 (1985) · Zbl 0571.76004
[24] Qian, Z. W., Nonlinear acoustics in higher-order approximation, Acta Phys. Sinica, 9, 4, 670-675 (1995)
[25] Xu, X. C.; Mao, F.; Gong, X. F.; Zhang, D., Theoretical calculation and experimental study on the third-order nonlinearity parameter C/A for organic liquids and biological fluids, J. Acoust. Soc. Amer., 113, 3, 1743-1748 (2003)
[26] Bamber, J. C., Attenuation and absorption, (Hill, C. R.; Bamber, J. C.; Ter Haar, G. R., Physical Principles of Medical Ultrasonics (2004)), 93-99
[27] Hagelberg, M. P.; Holton, G.; Kao, S., Calculation of B/A for water from measurements of ultrasonic velocity verse temperature and pressure to 100000, J. Acoust. Soc. Amer., 41, 3, 564-567 (1967)
[28] Bergmann, L., Der Ultraschall und Scine Anwendung in Wissenschaft and Technik (1954), Verlag: Verlag Stuttgart
[29] Coppens, A. B.; Beyer, R. T.; Seiden, M. B.; Donohue, J.; Guepin, F.; Hodson, R.; Townsend, C., Parameter of nonlinearity in Fluids II, J. Acoust. Soc. Amer., 38, 5, 797-804 (1965)
[30] Hartmann, B.; Balizer, E., Calculated B/A for n-alkane liquids, J. Acoust. Soc. Amer., 82, 2, 614-620 (1987)
[31] Lewin, P. A.; Bjørnø, L., Acoustic nonlinearity parameters in tissue characterization, Ultrason. Imaging, 5, 2, 170 (1983)
[32] F. Dunn, W.K. Law, L.A. Frizzell, The nonlinearity parameter B/A of biological media, in: Proc. 10th Symposium on Nonlinear Acoustics, 1984, pp. 222-224; F. Dunn, W.K. Law, L.A. Frizzell, The nonlinearity parameter B/A of biological media, in: Proc. 10th Symposium on Nonlinear Acoustics, 1984, pp. 222-224
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.