×

Design and experiment of an adaptive dynamic vibration absorber with smart leaf springs. (English) Zbl 1514.74037


MSC:

74H45 Vibrations in dynamical problems in solid mechanics
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74P10 Optimization of other properties in solid mechanics

References:

[1] Ma, F.; Cai, Y.; Wu, J. H., Ultralight plat-type vibration damper with designable working bandwidth and strong multi-peak suppression performance, Journal of Physics D, 54, 55303 (2021) · doi:10.1088/1361-6463/abc11a
[2] Wang, X.; Bi, F.; Du, H., Reduction of low frequency vibration of truck driver and seating system through system parameter identification, sensitivity analysis and active control, Mechanical Systems and Signal Processing, 105, 16-35 (2018) · doi:10.1016/j.ymssp.2017.12.006
[3] Xu, Z. D.; Chen, Z. H.; Huang, X. H., Recent advances in multi-dimensional vibration mitigation materials and devices, Frontiers in Materials, 6, 143 (2019) · doi:10.3389/fmats.2019.00143
[4] FRAHM, H. Device for Damping Vibrations of Bodies, US0989958, United States (1911)
[5] Liu, K.; Liu, J., The damped dynamic vibration absorbers: revisited and new result, Journal of Sound and Vibration, 284, 1181-1189 (2005) · doi:10.1016/j.jsv.2004.08.002
[6] Hartog, J. P., Mechanical Vibrations, 272-276 (1956), New York: McGraw-Hill Book Company, New York · Zbl 0071.39304
[7] Shakib, A.; Ghorbani-Tanha, A. K., An innovative adaptive tuned vibration absorber with variable mass moment of inertia for mitigation of transient response of systems, Structural Control and Health Monitoring, 27, e2518 (2020) · doi:10.1002/stc.2518
[8] Shen, Y.; Xing, Z.; Yang, S., Parameters optimization for a novel dynamic vibration absorber, Mechanical Systems and Signal Processing, 133, 106282 (2019) · doi:10.1016/j.ymssp.2019.106282
[9] Bonello, P., Adaptive Tuned Vibration Absorbers: Design Principles, Concepts and Physical Implementation, 1-28 (2011), Rijeka: In Tech, Rijeka
[10] Hunt, J. B.; Nissen, J. C., The broadband dynamic vibration absorber, Journal of Sound and Vibration, 83, 573-578 (1982) · doi:10.1016/S0022-460X(82)80108-9
[11] Bonello, P.; Brennan, M. J.; Elliott, S. J., Vibration control using an adaptive tuned vibration absorber with a variable curvature stiffness element, Smart Materials and Structures, 14, 5, 1055-1065 (2005) · doi:10.1088/0964-1726/14/5/044
[12] Kumbhar, S. B.; Chavan, S. P.; Gawade, S. S., Adaptive tuned vibration absorber based on magnetorheological elastomer-shape memory alloy composite, Mechanical Systems and Signal Processing, 100, 208-223 (2018) · doi:10.1016/j.ymssp.2017.07.027
[13] Luo, J. N.; Macdonald, J. H G.; Jiang, J. Z., Identification of optimum cable vibration absorbers using fixed-sized-inerter layouts, Mechanism and Machine Theory, 140, 292-304 (2019) · doi:10.1016/j.mechmachtheory.2019.06.008
[14] Shi, B.; Yang, J.; Jiang, J. Z., Tuning methods for tuned inerter dampers coupled to nonlinear primary systems, Nonlinear Dynamics, 107, 1663-1685 (2022) · doi:10.1007/s11071-021-07112-9
[15] Hu, Y.; Chen, M. Z Q., Performance evaluation for inerter-based dynamic vibration absorbers, International Journal of Mechanical Sciences, 99, 297-307 (2015) · doi:10.1016/j.ijmecsci.2015.06.003
[16] Detroux, T.; Habib, G.; Masset, L.; Kerschen, G., Performance, robustness and sensitivity analysis of the nonlinear tuned vibration absorber, Mechanical Systems and Signal Processing, 60-61, 799-809 (2015) · doi:10.1016/j.ymssp.2015.01.035
[17] Zang, J.; Zhang, Y. W.; Ding, H., The evaluation of a nonlinear energy sink absorber based on the transmissibility, Mechanical Systems and Signal Processing, 125, 99-122 (2019) · doi:10.1016/j.ymssp.2018.05.061
[18] Karama, M.; Hamdi, M.; Habbad, M., Energy harvesting in a nonlinear energy sink absorber using delayed resonators, Nonlinear Dynamics, 105, 113-129 (2021) · doi:10.1007/s11071-021-06611-z
[19] Ko, I. M.; Carcaterra, A.; Xu, Z., Energy sinks: vibration absorption by an optimal set of undamped oscillators, Journal of the Acoustical Society of America, 117, 3031-3042 (2015)
[20] Li, T.; Gourc, E.; Seguy, S., Dynamics of two vibro-impact nonlinear energy sinks in parallel under periodic and transient excitations, International Journal of Non-Linear Mechanics, 90, 100-110 (2017) · doi:10.1016/j.ijnonlinmec.2017.01.010
[21] Liu, Y.; Mojahed, A.; Bergman, L. A., A new way to introduce geometrically nonlinear stiffness and damping with an application to vibration suppression, Nonlinear Dynamics, 96, 1819-1845 (2019) · Zbl 1437.70034 · doi:10.1007/s11071-019-04886-x
[22] Wei, Y. M.; Wei, S.; Zhang, Q. L.; Dong, X. J.; Peng, Z. K.; Zhang, W. M., Targeted energy transfer of a parallel nonlinear energy sink, Applied Mathematics and Mechanics (English Edition), 40, 5, 621-630 (2019) · doi:10.1007/s10483-019-2477-6
[23] Vaurigaud, B.; Savadkoohi, A. T.; Lamarque, C. H., Targeted energy transfer with parallel nonlinear energy sinks, part I: design theory and numerical results, Nonlinear Dynamics, 66, 763-780 (2011) · Zbl 1337.70043 · doi:10.1007/s11071-011-9949-x
[24] Lamarque, C. H.; Savadkoohi, A. T.; Charlemagne, S., Nonlinear vibratory interactions between a linear and a non-smooth forced oscillator in the gravitational field, Mechanical Systems and Signal Processing, 89, 131-148 (2017) · doi:10.1016/j.ymssp.2016.09.043
[25] Zhang, Z.; Zhang, Y. W.; Ding, H., Vibration control combining nonlinear isolation and nonlinear absorption, Nonlinear Dynamics, 100, 2121-2139 (2020) · doi:10.1007/s11071-020-05606-6
[26] Benacchio, S.; Malher, A.; Boisson, J., Design of a magnetic vibration absorber with tunable stiffnesses, Nonlinear Dynamics, 85, 893-911 (2016) · doi:10.1007/s11071-016-2731-3
[27] Chen, J. E.; Sun, M.; Hu, W. H., Performance of non-smooth nonlinear energy sink with descending stiffness, Nonlinear Dynamics, 100, 255-267 (2020) · doi:10.1007/s11071-020-05528-3
[28] Zhao, J.; Sun, C.; Kacem, N., A nonlinear resonant mass sensor with enhanced sensitivity and resolution incorporating compressed bistable beam, Journal of Applied Physics, 124, 16, 164503 (2018) · doi:10.1063/1.5050179
[29] Chang, Y.; Zhou, J.; Wang, K., Theoretical and experimental investigations on semi-active quasi-zero-stiffness dynamic vibration absorber, International Journal of Mechanical Sciences, 214, 106892 (2022) · doi:10.1016/j.ijmecsci.2021.106892
[30] Rafieipour, M. H.; Ghorbani-Tanha, A. K.; Rahimian, M., A novel semi-active TMD with folding variable stiffness spring, Earthquake Engineering and Engineering Vibration, 13, 509-518 (2014) · doi:10.1007/s11803-014-0258-5
[31] Komatsuzaki, T.; Iwata, Y., Design of a real-time adaptively tuned dynamic vibration absorber with a variable stiffness property using magnetorheological elastomer, Shock and Vibration, 2015, 67608 (2015) · doi:10.1155/2015/676508
[32] Shui, X.; Wang, S., Investigation on a mechanical vibration absorber with tunable piecewise-linear stiffness, Mechanical Systems and Signal Processing, 100, 330-343 (2018) · doi:10.1016/j.ymssp.2017.05.046
[33] Kawai, T.; Komatsuzaki, T.; Asanuma, H., Development of a tuning algorithm for a dynamic vibration absorber with a variable-stiffness property, Vibration Engineering for a Sustainable Future (2021), Switzerland: Springer, Switzerland
[34] Nguyen, X. B.; Komatsuzaki, T.; Truong, H. T., Novel semiactive suspension using a magnetorheological elastomer (MRE)-based absorber and adaptive neural network controller for systems with input constraints, Mechanical Sciences, 11, 465-479 (2020) · doi:10.5194/ms-11-465-2020
[35] Mirsanei, R.; Hajikhani, A.; Peykari, B., Developing a new design for adaptive tuned dynamic vibration absorber (ATDVA) based on smart slider-crank mechanism to control of undesirable vibrations, International Journal of Mechanical Engineering and Mechatronics, 1, 80-87 (2012)
[36] Li, L.; Luo, Z.; He, F., An improved partial similitude method for dynamic characteristic of rotor systems based on Levenberg-Marquardt method, Mechanical Systems and Signal Processing, 165, 108405 (2022) · doi:10.1016/j.ymssp.2021.108405
[37] Walsh, P. L.; Lamancusa, J. S., A variable stiffness vibration absorber for minimization of transient vibrations, Journal of Sound and Vibration, 158, 195-211 (1992) · doi:10.1016/0022-460X(92)90045-Y
[38] Ghorbani-Tanha, A. K.; Rahimian, M.; Noorzad, A., A novel semiactive variable stiffness device and its application in a new semiactive tuned vibration absorber, Journal of Engineering Mechanics-ASCE, 137, 390-399 (2011) · doi:10.1061/(ASCE)EM.1943-7889.0000235
[39] Kidner, M. R F.; Brennan, M. J., Varying the stiffness of a beam-like neutralizer under fuzzy logic control, Journal of Vibration and Acoustics, 124, 90-99 (2002) · doi:10.1115/1.1423634
[40] Nagaya, K.; Kurusu, A.; Ikai, S., Vibration control of a structure by using a tunable absorber and an optimal vibration absorber under auto-tuning control, Journal of Sound and Vibration, 228, 773-792 (1999) · doi:10.1006/jsvi.1999.2443
[41] Wu, T. H.; Lan, C. C., A wide-range variable stiffness mechanism for semi-active vibration systems, Journal of Sound and Vibration, 363, 18-32 (2016) · doi:10.1016/j.jsv.2015.10.024
[42] NAGARAJAIAH, S. Structural Vibration Damper with Continuously Variable Stiffness, US09/135370, United States (2020)
[43] Peng, C.; Gong, X. L., Active-adaptive vibration absorbers and its vibration attenuation performance, Applied Mechanics and Materials, 312, 262-267 (2013) · doi:10.4028/www.scientific.net/AMM.312.262
[44] Zhang, J.; Wang, T.; Wang, J., Dynamic modeling and simulation of inchworm movement towards bio-inspired soft robot design, Bioinspiration & Biomimetics, 14, 066012 (2019) · doi:10.1088/1748-3190/ab3e1f
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.