×

A condition for a translation quiver to be a coil. (English) Zbl 1061.16030

Summary: We single out a class of translation quivers and prove combinatorially that the translation quivers in this class are coils. These coils form a class of special coils. They are easier to visualize, but still show all the strange behaviour of general coils, and contain quasi-stable tubes as special examples.

MSC:

16G70 Auslander-Reiten sequences (almost split sequences) and Auslander-Reiten quivers
16G20 Representations of quivers and partially ordered sets
16G10 Representations of associative Artinian rings
Full Text: DOI

References:

[1] Brenner, S.: A Combinatorial Characterization of Finite Auslander-Reiten Quiver. Lecture Notes in Math., Springer-Verlag, 1177, 13–49 (1986) · Zbl 0644.16017
[2] D’Este, G., Ringel, C. M.: Coherent Tubes. J. Algebra, 87, 150–201 (1984) · Zbl 0537.16023 · doi:10.1016/0021-8693(84)90165-0
[3] Ringel, C. M.: Tame Algebras and Integral Quadratic Forms. Lecture Notes in Math., Springer-Verlag, 1099, (1984) · Zbl 0546.16013
[4] Liu, S. P.: Shapes of Connected Components of the Auslander-Reiten Quivers of Artin Algebras. In ”Representation Theory of Algebras and Related Topics”, CMS Conference Proceedings, 19, 109–137 (1996) · Zbl 0851.16016
[5] Assem, I., Skowroński, A.: Indecomposable Modules over Multicoil Algebras. Math. Scand., 71, 31–61 (1992) · Zbl 0796.16014
[6] Assem, I., Skowroński, A.: Multicoil Algebras. In ”Representation Theory of Algebras”, CMS Conference Proceedings, 14, 29–68 (1993) · Zbl 0827.16010
[7] de la Peña, J. A., Skowroński, A.: Geometric and Homological Characterizations of Polynomial Growth Strongly Connected Algebras. Invent. Math., 126(2), 287–296 (1996) · Zbl 0883.16007 · doi:10.1007/s002220050100
[8] Skowroński, A.: Algebras of Polynomial Growth. In ”Topics in Algebra”, Banach Center Publications, Warszawa, 26, 535–568 (1990)
[9] Skowroński, A.: Simply Connected Algebras of Polynomial Growth. Composition Math., 109, 99–133 (1997) · Zbl 0889.16004 · doi:10.1023/A:1000245728528
[10] Ágoston, I., Luk’acs, E., Ringel, C. M.: Frobenius Functions on Translation Quivers. In ”Representation Theory of Algebras”, CMS Conference Proceedings, 18, 17–37 (1996) · Zbl 0858.16010
[11] Ágoston, I., Lukács, E., Ringel, C. M.: Realisation of Frobenius Functions. J. Algebra, 210, 419–439 (1998) · Zbl 0937.16024 · doi:10.1006/jabr.1998.7526
[12] Assem, I., Skowro’nski, A.: Coils and Multicoil Algebras. In ”Representation Theory of Algebras” and Related Topics, CMS Conference Proceedings, 19, 1–23 (1996) · Zbl 0849.16015
[13] Zhu, B.: A Criterion for Coils. Comm. Algebra, 29(1), 253–269 (2001) · Zbl 0999.16014 · doi:10.1081/AGB-100000798
[14] Zhu, B.: Coils for vectorspace categories. Comm. Algebra, 29(3), 1191–1214 (2001) · Zbl 0999.16015 · doi:10.1081/AGB-100001677
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.