×

Functional response quantile regression model. (English) Zbl 07764899

Summary: We propose a new functional response quantile regression model, and develop a data-driven estimation procedure to estimate the quantile regression processes based on a local linear approximation. Theoretically, we obtain the global uniform Bahadur representation of the estimator with respect to the time/location and the quantile level, and show that the estimator converges weakly to a two-parameter continuous Gaussian process. We then derive the asymptotic bias and mean integrated squared error of the smoothed individual functions and their uniform convergence rates under given quantile levels. Based on the theoretical results, we introduce a global test for the coefficient functions and discuss how to construct simultaneous confidence bands. We evaluate our method using simulations and by applying it to diffusion tensor imaging data and ADHD-200 functional magnetic resonance imaging data.

MSC:

62-XX Statistics

Software:

fda (R)
Full Text: DOI

References:

[1] Akritas, M. and Keilegom, I. V. (2001). Nonparametric estimation of the residual distribution. Scand. J. Statist. 28, 549-567. · Zbl 0980.62027
[2] Belloni, A., Chernozhukov, V., Chetverikov, D. and Fernández-Val, I. (2019). Conditional quan-tile processes based on series or many regression. J. Econometrics 213, 4-29. · Zbl 1456.62067
[3] Cai, Z. and Xu, X. (2009). Nonparametric quantile estimations for dynamic smooth coefficient models. J. Am. Statist. Assoc. 104, 371-383. · Zbl 1375.62003
[4] Chen, K. and Müller, H. (2012). Conditional quantile analysis when covariates are functions with application to growth data. J. R. Stat. Soc. Ser. B. Stat. Methodol. 74, 1-23.
[5] Şentürk, D. and Müller, H.-G. (2010). Functional varying coefficient models for longitudinal data. J. Amer. Statist. Assoc. 105, 1256-1264. · Zbl 1390.62135
[6] Fan, J. and Gijbels, I. (1996). Local Polynomial Modelling and Its Applications. Chapman & Hall, London. · Zbl 0873.62037
[7] Fan, J., Yao, Q. and Tong, H. (1996). Estimation of conditional densities and sensitivity measures in nonlinear dynamical systems. Biometrika 83, 189-206. · Zbl 0865.62026
[8] Fan, J. and Yim, T. (2004). A data-driven method for estimating conditional densities. Biometrika 91, 819-834. · Zbl 1078.62032
[9] Garrido, M. I., Sahani, M. and Dolan, R. J. (2013). Outlier responses reflect sensitivity to statistical structure in the human brain. PLoS Comp. Biology 9, e1002999.
[10] Hall, P., Racine, J. and Li, Q. (2004). Cross-validation and the estimation of conditional prob-ability densities. J. Amer. Statist. Assoc. 99, 1015-1026. · Zbl 1055.62035
[11] Hastie, T. and Tibshirani, R. (1993). Varying-coefficient models. J. R. Stat. Soc. Ser. B. Stat. Methodol. 55, 757-796. · Zbl 0796.62060
[12] Hendricks, W. and Koenker, R. (1992). Hierarchical spline models for conditional quantiles and the demand for electricity. J. Amer. Statist. Assoc. 87, 58-68.
[13] Kato, K. (2012). Estimation in functional linear quantile regression. Ann. Statist. 40, 3108-3136. · Zbl 1296.62104
[14] Koenker, R. (2005). Quantile Regression. Cambridge University Press, Cambridge. · Zbl 1111.62037
[15] Koenker, R. and Bassett, G. J. R. (1978). Regression quantiles. Econometrica 46, 33-50. · Zbl 0373.62038
[16] Kosorok, M. (2008). Introduction to Empricial Processes and Semiparametric Inference. Springer, New York. · Zbl 1180.62137
[17] Kosorok, M. R. (2003). Bootstraps of sums of independent but not identically distributed stochastic processes. J. Multivariate Anal. 84, 299-318. · Zbl 1016.62063
[18] Krauledat, M., Dornhege, G., Blankertz, B. and Müller, K.-R. (2007). Robustifying EEG data analysis by removing outliers. Chaos and Complex. Letters 2, 259-274.
[19] Liu, Y., Li, M. and Morris, J. (2020a). Function-on-scalar quantile regression with application to mass spectrometry proteomics data. Ann. Appl. Stat. 14, 521-541. · Zbl 1446.62355
[20] Liu, Y., Li, M. and Morris, J. (2020b). On function-on-scalar quantile regression. arXiv: 2002.03355v1.
[21] Ma, S., Yang, L. and Carroll, R. J. (2012). A simultaneous confidence band for sparse longitu-dinal regression. Statist. Sinica 22, 95-122. · Zbl 1417.62088
[22] Müller, U. U., Schick, A. and Wefelmeyer, W. (2007). Estimating the error distribution function in semiparametric regression. Statistics & Decisions 25, 1-18. · Zbl 1137.62023
[23] Neumeyer, N. and Keilegom, I. V. (2010). Estimating the error distribution in nonparametric multiple regression with applications to model testing,. J. Multivariate Anal. 101, 1067-1078. · Zbl 1185.62078
[24] Ramsay, J. O. and Dalzell, C. J. (1991). Some tools for functional data analysis (with discussion). · Zbl 0800.62314
[25] J. R. Stat. Soc. Ser. B. Stat. Methodol. 53, 539-572.
[26] Ramsay, J. O. and Silverman, B. W. (2005). Functional Data Analysis. 2nd Edition. Springer, New York. · Zbl 1079.62006
[27] Rice, J. A. and Silverman, B. W. (1991). Estimating the mean and covariance structure nonpara-metrically when the data are curves. J. R. Stat. Soc. Ser. B. Stat. Methodol. 53, 233-243. · Zbl 0800.62214
[28] Shen, Q. and Faraway, J. (2004). An f test for linear models with functional responses. Statist. Sinica 14, 1239-1257. · Zbl 1060.62075
[29] Wang, H., Zhu, Z. and Zhou, J. (2009). Quantile regression in partially linear varying coefficient models. Ann. Statist. 37, 3841-3866. · Zbl 1191.62077
[30] Wang, J.-L., Chiou, J.-M. and Müller, H.-G. (2016). Functional data analysis. Annu. Rev. Stat. Appl. 3, 257-295.
[31] Yang, H., Baladandayuthapani, V., Rao, A. and Morris, J. (2020). Quantile function on scalar regression analysis for distributional data. J. Amer. Statist. Assoc. 115, 90-106. · Zbl 1437.62159
[32] Yao, F. (2007). Asymptotic distributions of nonparametric regression estimators for longitudinal or functional data. J. Multivariate Anal. 98, 40-56. · Zbl 1102.62040
[33] Yao, F., Müller, H. G. and Wang, J. L. (2005a). Functional data analysis for sparse longitudinal data. J. Amer. Statist. Assoc. 100, 577-590. · Zbl 1117.62451
[34] Yao, F., Müller, H. G. and Wang, J. L. (2005b). Functional linear regression analysis for longi-tudinal data. Ann. Statist. 33, 2873-2903. · Zbl 1084.62096
[35] Zhang, J. T. (2011). Statistical inference for linear models with functional responses. Statist. Sinica 21, 1431-1451. · Zbl 1236.62081
[36] Zhang, J. T. and Chen, J. (2007). Statistical inferences for functional data. Ann. Statist. 35, 1052-1079. · Zbl 1129.62029
[37] Zhang, Z., Wang, X., Kong, L. and Zhu, H. (2022). High-dimensional spatial quantile function-on-scalar regression. J. Amer. Statist. Assoc. 117, 1563-1578. · Zbl 1506.62288
[38] Zheng, S., Yang, L. and Härdle, W. (2014). A smooth simultaneous confidence corridor for the mean of sparse functional data. J. Amer. Statist. Assoc. 109, 661-673. · Zbl 1367.62151
[39] Zhu, H., Ibrahtm, J. G., Tang, N., Rowe, D. B., Hao, X., Bansal, R. et al. (2007). A statistical analysis of brain morphology using wild bootstrapping. IEEE Trans. Med. Imaging 26, 954-966.
[40] Zhu, H. T., Li, R. and Kong, L. (2012). Multivariate varying coefficient model for functional responses. Ann. Statist. 40, 2634-2666. · Zbl 1373.62169
[41] Dehan Kong Department of Statistical Sciences, University of Toronto, Toronto, Ontario M5S 3G3, Canada. E-mail: kongdehan@utstat.toronto.edu
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.