×

The loop equation for special cubic Hodge integrals. (English) Zbl 1497.14014

Let \(\overline{\mathcal{M}}_{g,n}\) be the moduli space of stable algebraic curves of genus \(g\) with \(n\) distinct marked points, where \(g\) and \(n\) are non-negative integers satisfying the stability condition \(2g-2+n>0\). For \(1\le k\le n\) and \(0\le j\le g\), denote by \(\psi_k\) the first Chern class of the \(k\)-th tautological line bundle \(\mathbb{L}_k\) on \(\overline{\mathcal{M}}_{g,n}\), and by \(\lambda_j\) the \(j\)-th Chern class of the Hodge bundle \(\mathbb{E}_{g,n}\) on \(\overline{\mathcal{M}}_{g,n}\). The rational numbers defined by the formula \[ \int_{\overline{\mathcal{M}}_{g,n}} \psi_1^{i_1}\cdots\psi_n^{i_n}\lambda_{j_1}\cdots\lambda_{j_m} \] are called the Hodge integrals. These numbers take zero value unless the degree-dimension counting matches, i.e. \[ i_1+\dots +i_n+ j_1+\dots +j_m = 3g-3+n. \tag{1} \] Denote by \(\mathcal{C}_g(z):= \sum_{j=0}^g \lambda_j z^j\) the Chern polynomial of \(\mathbb{E}_{g,n}\). We will be particularly interested in the following class of Hodge integrals defined via the cubic products of Chern polynomials, called the cubic Hodge integrals: \[ \int_{\overline{\mathcal{M}}_{g,n}} \psi_1^{i_1}\cdots\psi_n^{i_n} \mathcal{C}_g(-p)\mathcal{C}_g(-q)\mathcal{C}_g(-r),\tag{2} \] where \(p,q,r\) are complex parameters. These integrals are called special if \(p,q,r\) satisfy the following local Calabi-Yau condition: \[ pq+qr+rp=0.\tag{3} \] Let \(\mathcal{H}=\mathcal{H}(\mathbf{t}; p,q,r; \epsilon)\) be the cubic Hodge free energy defined by \begin{align*} \mathcal{H}(\mathbf{t}; p,q,r; \epsilon) &:= \sum_{g\geq0}\epsilon^{2g-2}\mathcal{H}_g(\mathbf{t}; p,q,r), \\ \mathcal{H}_g(\mathbf{t}; p,q,r) &:= \sum_{n\geq 0} \sum_{i_1,\dots,i_n\geq 0} \frac{t_{i_1}\cdots t_{i_n}}{n!} \int_{\overline{\mathcal{M}}_{g,n}} \psi_1^{i_1}\cdots\psi_n^{i_n} \mathcal{C}_g(-p)\mathcal{C}_g(-q)\mathcal{C}_g(-r) . \end{align*} Here \(\mathcal{H}_g(\mathbf{t}; p,q,r)\) is called the genus \(g\) part of the free energy \(\mathcal{H}\). Then the exponential \[ e^{\mathcal{H}(\mathbf{t};p,q,r;\epsilon)} =:Z_{\text{cubic}}(\mathbf{t};p,q,r;\epsilon)=:Z_{\text{cubic}} \] is called the cubic Hodge partition function. Clearly, \(\mathcal{H}_g(\mathbf{t}; p,q,r)\in \mathbb{C}[p,q,r][[\mathbf{t}]]\). The genus zero free energy \(\mathcal{H}_0(\mathbf{t})\) is actually independent of \(p,q,r\) and has the explicit expression \[ \mathcal{H}_0(\mathbf{t}) = \sum_{n\geq 3} \frac{1}{n(n-1)(n-2)} \sum_{i_1+\dots+i_n=n-3} \frac{t_{i_1}}{i_1!} \cdots \frac{t_{i_n}}{i_n!} . \] Define \[ v(\mathbf{t}):=\partial_{t_0}^2 \mathcal{H}_0(\mathbf{t})=\sum_{n\geq 1} \frac1n \sum_{i_1+\dots+i_n=n-1} \frac{t_{i_1}}{i_1!} \cdots \frac{t_{i_n}}{i_n!}.\tag{4} \] It satisfies the following Riemann hierarchy: \[ \frac{\partial v}{\partial t_i} = \frac{v^i}{i!} \frac{\partial v}{\partial t_0} , \quad i\geq 0.\tag{5} \] More generally, if one defines \(w=\epsilon^2 \partial_{t_0}^2 \mathcal{H}(\mathbf{t};p,q,r;\epsilon)\), then \(w\) satisfies an integrable hierarchy of Hamiltonian evolutionary PDEs [A. Buryak et al., J. Differ. Geom. 92, No. 1, 153–185 (2012; Zbl 1259.53079); J. Geom. Phys. 62, No. 7, 1639–1651 (2012; Zbl 1242.53113); B. Dubrovin et al., Adv. Math. 293, 382–435 (2016; Zbl 1335.53114)], called the Hodge hierarchy for the special cubic Hodge integrals, which is a deformation of the Riemann hierarchy. The Hodge-FVH correspondence is given by the following conjecture [S.-Q. Liu et al., Lett. Math. Phys. 108, No. 2, 261–283 (2018; Zbl 1410.37061)].
Conjecture. The Hodge hierarchy for the special cubic Hodge integrals is equivalent, under a certain Miura type transformation, to the fractional Volterra hierarchy (FVH). Furthermore, the special cubic Hodge partition function gives a tau function of the FVH.
From now on, we assume that \(p,q,r\) satisfy the local Calabi-Yau condition (3). The case with \(p,q,r\in \mathbb{Q}\) is called rational. Let us first consider the rational case. Due to the symmetry property of the cubic Hodge integrals with respect to \(p,q,r\), and the homogeneity property (deduced from (1)) \[ \mathcal{H}_g( \mathbf{t}; \lambda p, \lambda q, \lambda r)|_{t_i\mapsto t_i \lambda^{i-1}} = \lambda^{3g-3} \mathcal{H}_g( \mathbf{t}; p, q, r), \] we can assume that \[ p=\frac{1}{K_1},\quad q=\frac{1}{K_2}, \quad r=-\frac{1}{h},\tag{6} \] where \(K_1, K_2 \in \mathbb{N}\), \((K_1,K_2)=1\) and \(h:=K_1+K_2\). We denote, for \(\ell\geq 0\), \begin{align*} b_{\alpha+h\ell} &:= \frac{\alpha}{K_1}+\ell, \quad c_{\alpha+h\ell} := \binom{b_{\alpha+h\ell} h}{b_{\alpha+h\ell} K_1} , \qquad \alpha=0,\dots,K_1-1,\tag{7} \\ b_{\alpha+h\ell} &:= \frac{-\alpha}{K_2}+\ell, \quad c_{\alpha+h\ell} := \binom{b_{\alpha+h\ell} h}{b_{\alpha+h\ell} K_2}, \qquad \alpha=-(K_2-1),\dots,-1,\tag{8} \end{align*} and \[ \mathbb{N}_*=(\mathbb{N}-K_2) \backslash \left(\{0\} \cup (h\mathbb{N}-K_2)\right), \quad \text{where } a\mathbb{N}-K_2:=\{ak-K_2|k\in \mathbb{N}\}. \] Define \[ Z(x,\mathbf{s};\epsilon):=\exp\left(\frac{A(x,\tilde{\mathbf{s}})}{\epsilon^2}\right) Z_{\text{cubic}}\left(\mathbf{t}(x,\mathbf{s}); \frac{1}{K_1}, \frac{1}{K_2}, -\frac{1}{h};\epsilon \right), \tag{9} \] where \(\mathbf{s}:=(s_k)_{k\in \mathbb{N}_*}\) is an infinite vector of indeterminates, \(\tilde{s}_k=s_k-c_h^{-1}\delta_{k,h}\) (\(k\in \mathbb{N}_*\)), \[ t_i=t_i(x,\mathbf{s})=\sum_{k\in \mathbb{N}_*} b_k^{i+1} c_k \tilde s_k+\delta_{i,1}+x \delta_{i,0},\quad i\geq 0,\tag{10} \] and \(A\) is the quadratic series \[ A:=A(x,\mathbf{s})=\frac{1}{2}\sum_{k_1,k_2\in \mathbb{N}_*} \frac{b_{k_1} b_{k_2}}{b_{k_1} + b_{k_2}} c_{k_1} c_{k_2} s_{k_1} s_{k_2} + x \sum_{k\in \mathbb{N}_*} c_k s_k. \] Note that for \(g\geq0\), \(\mathcal{H}_g(\mathbf{t}(x,\mathbf{s});\frac{1}{K_1}, \frac{1}{K_2}, -\frac{1}{h})\) is a well-defined formal power series in \(\mathbb{C}[[x-1]][[\mathbf{s}]]\).
Denote \(I=\{-(K_2-1),\dots,K_1-1\}\) and \(I_*=I\backslash \{0\}\), and define a family of linear operators \(L_m=L_m\left(\epsilon^{-1}x,\epsilon^{-1}\mathbf{s},\epsilon \partial/\partial \mathbf{s}\right)\), \(m\geq 0\) by \begin{align*} L_0=&\sum_{k\in \mathbb{N}_*} b_k s_k \frac{\partial}{\partial s_k}+\frac{x^2}{2\epsilon^2}+\frac{1}{24}\left(\frac1h-\frac1{K_1}-\frac1{K_2}\right), \tag{11} \\ L_m=&\sum_{k\in \mathbb{N}_*} b_k s_k \frac{\partial}{\partial s_{k+h m}}+x\frac{\partial}{\partial s_{hm}} \\ & +\frac{\epsilon^2}{2} \sum_{\ell=1}^{m-1}\frac{\partial^2}{\partial s_{h \ell} \partial s_{h(m-\ell)}} + \frac{\epsilon^2}{2} \sum_{\alpha,\beta \in I_*} \sum_{\ell=0}^{m-1} G^{\alpha\beta} \frac{\partial^2}{\partial s_{\alpha+h\ell} \partial s_{\beta+h(m-1-\ell)}}, \tag{12} \end{align*} where \(\left(G^{\alpha\beta}\right)_{\alpha,\beta\in I}\) is a symmetric nondegenerate constant matrix defined by \[ G^{\alpha\beta}= \begin{cases} \frac{K_1}{h}\delta^{\alpha+\beta,-K_2}, &\alpha,\beta<0;\\ 1, &\alpha=\beta=0;\\ \frac{K_2}{h}\delta^{\alpha+\beta, K_1}, &\alpha,\beta>0;\\ 0 &\text{elsewhere}. \end{cases}\tag{13} \] It is easy to check that the operators \(L_m\) satisfy the following Virasoro commutation relations: \[ \left[ L_m,L_n \right]= \left(m-n\right) L_{m+n}, \quad \forall\, m,n\geq 0. \] Theorem 1. For the rational numbers \(p,q,r\) given by (6), the series \(Z(x,\mathbf{s};\epsilon)\) defined by (9) satisfies the following Virasoro constraints: \[ L_m\left(\epsilon^{-1}x,\epsilon^{-1}\tilde{\mathbf{s}},\epsilon \partial/\partial \mathbf{s}\right) Z(x,\mathbf{s};\epsilon)=0, \quad m\geq 0.\tag{14} \]
We proceed to the general case. Denote \[ \sigma_1 = -(p+q+r), \quad \sigma_3 = -2 \left(p^3+q^3+r^3\right).\tag{15} \] From the local Calabi-Yau condition (3) and the fact that the integral in (2) is symmetric in \(p,q,r\), we know that \[ \mathcal{H}_g:=\mathcal{H}_g(\mathbf{t};p,q,r)\in \mathbb{C}[\sigma_1,\sigma_3][[\mathbf{t}]], \quad g\ge 0.\tag{16} \] The following theorem is the main result of the present paper.
Theorem 2. The equation \[ \begin{split} \sum_{i\geq0 }\left( \partial^i \Theta+\sum_{j=1}^i \binom{i}{j} P_{j-1,i-j+1}\right) \frac{\partial \Delta H }{\partial z_i} \\ = \frac{\Theta^2}{16}-\left(\frac{1}{16}-\frac{\sigma_1}{24}\right)\Theta+ \epsilon^2\sum_{i\geq0}\partial^{i+2}\left(\frac{\Theta^2}{16}-\left(\frac{1}{16}-\frac{\sigma_1}{24}\right)\Theta\right) \frac{\partial \Delta H}{\partial z_i}\\ + \frac{\epsilon^2}{2}\sum_{i,j\geq0} P_{i+1,j+1} \left(\frac{\partial^2\Delta H}{\partial z_i \partial z_j} +\frac{\partial \Delta H}{\partial z_i}\frac{\partial \Delta H}{\partial z_j}\right), \end{split} \tag{17} \] which is called the Dubrovin-Zhang loop equation for the special cubic Hodge integrals, has a unique solution of the form \[ \Delta H:=\sum_{g\geq 1} \epsilon^{2g-2} H_g,\quad H_g:=H_g(z_0,\dots,z_{3g-2};\sigma_1,\sigma_3) \] up to the addition of a constant to each \(H_g\), \(g\geq 1\). These constants can be uniquely determined by the following conditions: \[ H_1= \frac1{24} \log z_1 + \frac{\sigma_1}{24} z_0, \quad \sum_{j=1}^{3g-2} j z_j \frac{\partial H_g}{\partial z_j} = (2g-2)H_g, \quad g\geq 2. \tag{18} \] Here \[ \partial:=\sum_{k\geq 0} z_{k+1} \frac{\partial}{\partial z_k},\quad \Theta:= \frac1{1-e^{z_0}/\mu}, \] the coefficients \(P_{i,j}\) are certain polynomials in \(\Theta, \sigma_1,\sigma_3, z_1,z_2,\dots\) whose explicit expressions are given in Section 4, and \(\mu\) is an arbitrary parameter. Moreover, let \(v(\mathbf{t})\) be defined in (4), then the genus \(g\) (\(g\geq 1\)) special cubic Hodge free energy has the expression \[ \mathcal{H}_g =H_g\left(v(\mathbf{t}), \frac{\partial v(\mathbf{t})}{\partial t_0},\cdots,\frac{\partial^{3g-2} v(\mathbf{t})}{\partial t_0^{3g-2}};\sigma_1,\sigma_3\right).\tag{19} \]
One can recursively solve the loop equation to obtain the free energies \(H_g\), \(g\geq 1\).

MSC:

14C30 Transcendental methods, Hodge theory (algebro-geometric aspects)
14D07 Variation of Hodge structures (algebro-geometric aspects)
32S35 Mixed Hodge theory of singular varieties (complex-analytic aspects)

References:

[1] V. Bouchard, A. Klemm, M. Mariño and S. Pasquetti, Remodeling the B-model, Comm. Math. Phys. 287 (2009) 117-178, MR2480744, Zbl 1178.81214. · Zbl 1178.81214
[2] A. Buryak, H. Posthuma and S. Shadrin, A polynomial bracket for the Dubrovin-Zhang hierarchies, J. Differential Geom. 92 (2012) 153-185, MR2998900, Zbl 1259.53079. · Zbl 1259.53079
[3] A. Buryak, H. Posthuma and S. Shadrin, On deformations of quasi-Miura trans-formations and the Dubrovin-Zhang bracket, J. Geom. Phys. 62 (2012) 1639-1651, MR2922026, Zbl 1242.53113. · Zbl 1242.53113
[4] R. Dijkgraaf, H. Verlinde and E. Verlinde, Loop equations and Virasoro con-straints in nonperturbative two-dimensional quantum gravity, Nucl. Phys. B 348 (1991) 435-456, MR1083914, Zbl 1221.37178.
[5] B. Dubrovin, Geometry of 2D topological field theories, In “Integrable Systems and Quantum Groups” (Montecatini Terme, 1993). Editors: M. Francaviglia and S. Greco, Springer Lecture Notes in Math. 1620 (1996) 120-348, MR1397274, Zbl 0841.58065. · Zbl 0841.58065
[6] B. Dubrovin, On almost duality for Frobenius manifolds, Amer. Math. Soc. Transl. Ser. 2 212 (2004) 75-132, MR2070050, Zbl 1063.53092.
[7] B. Dubrovin, S.-Q. Liu, D. Yang and Y. Zhang, Hodge integrals and tau-symmetric integrable hierarchies of Hamiltonian evolutionary PDEs, Adv. Math. 293 (2016) 382-435, MR3474326, Zbl 1335.53114. · Zbl 1335.53114
[8] B. Dubrovin, S.-Q. Liu, D. Yang and Y. Zhang, Hodge-GUE correspondence and the discrete KdV equation, Comm. Math. Phys. 379 (2020) 461-490, MR4156215, Zbl 1455.37056. · Zbl 1455.37056
[9] B. Dubrovin and D. Yang, On cubic Hodge integrals and random matrices, Com-mun. Number Theory Phys. 11 (2017) 311-336, MR3690252, Zbl 1439.14091. · Zbl 1439.14091
[10] B. Dubrovin and Y. Zhang, Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov-Witten invariants, eprint arXiv: math/0108160.
[11] C. Faber and R. Pandharipande, Hodge integrals and Gromov-Witten theory, Invent. Math. 139 (2000) 173-199, MR1728879, Zbl 0960.14031. · Zbl 0960.14031
[12] A.B. Givental, Gromov-Witten invariants and quantization of quadratic Hamil-tonians, Mosc. Math. J. 1 (2001) 551-568, MR1901075, Zbl 1008.53072. · Zbl 1008.53072
[13] R. Gopakumar and C. Vafa, On the gauge theory/geometry correspondence, Adv. Theor. Math. Phys. 5 (1999) 1415-1443, MR1796682, Zbl 0972.81135. · Zbl 0972.81135
[14] T. Graber and R. Pandharipande, Localization of virtual classes, Invent. Math. 135 (1999) 487-518, MR1666787, Zbl 0953.14035. · Zbl 0953.14035
[15] M.-X. Huang, A. Klemm and S. Quackenbush, Topological string theory on compact Calabi-Yau: modularity and boundary conditions, In “Homological mirror symmetry”, Editors: Kapustin, Anton et al. New developments and perspectives. Berlin: Springer. Lecture Notes in Physics 757 (2009) 45-102, MR2596635, Zbl 1166.81358. · Zbl 1166.81358
[16] M. Kontsevich, Intersection theory on the moduli space of curves and the ma-trix Airy function, Comm. Math. Phys. 147 (1992) 1-23, MR1171758, Zbl 0756.35081. · Zbl 0756.35081
[17] C.-C. M. Liu, K. Liu and J. Zhou, A proof of a conjecture of Mariño-Vafa on Hodge integrals, J. Differential Geom. 65 (2003) 289-340, MR2058264, Zbl 1077.14084. · Zbl 1077.14084
[18] S.-Q. Liu, D. Yang, Y. Zhang and C. Zhou, The Hodge-FVH correspondence, J. Reine Angew. Math. 775 (2021) 259-300, MR4265184, Zbl 1470.37087. · Zbl 1470.37087
[19] S.-Q. Liu, Y. Zhang and C. Zhou, Fractional Volterra Hierarchy, Lett. Math. Phys. 108 (2018) 261-283, MR3748364, Zbl 1410.37061. · Zbl 1410.37061
[20] M. Mariño and C. Vafa, Framed knots at large N., Orbifolds in Mathematics and Physics (Madison, WI, 2001), Contemp. Math. 310 (2002) 185-204, MR1950947, Zbl 1042.81071. · Zbl 1042.81071
[21] D. Mumford, Towards an enumerative geometry of the moduli space of curves, In “Arithmetic and geometry” II, 271-328, Progr. Math., 36, Birkhäuser, Boston, MA, 1983, MR0717614, Zbl 0554.14008. · Zbl 0554.14008
[22] A. Okounkov and R. Pandharipande, Hodge integrals and invariants of the un-knot, Geom. Topol. 8 (2004), 675-699, MR2057777, Zbl 1062.14035. · Zbl 1062.14035
[23] E.T. Whittaker and G.N. Watson, A Course of Modern Analysis, 4th edn., Cambridge University Press, Cambridge, 1963, MR0178117, JFM 53.0180.04. · Zbl 0108.26903
[24] E. Witten, Two-dimensional gravity and intersection theory on moduli space, Surveys in differential geometry (1991), 243-320. Lehigh Univ., Bethlehem, PA., MR1144529, Zbl 0757.53049.
[25] J. Zhou, On recursion relation for Hodge integrals from cut-and-join equations. Preprint, 2009. Department of Mathematical Sciences Tsinghua University Beijing 100084, P.R. China E-mail address: liusq@tsinghua.edu.cn School of Mathematical Sciences University of Science and Technology of China Hefei 230026, P.R. China E-mail address: diyang@ustc.edu.cn Department of Mathematical Sciences Tsinghua University Beijing 100084, P.R. China E-mail address: youjin@tsinghua.edu.cn
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.