×

Stress fields of a spheroidal inhomogeneity with an interphase in an infinite medium under remote loadings. (English) Zbl 1145.74301

Summary: This paper presents the elastostatic solution of the problem of an arbitrarily oriented spheroidal inhomogeneity with an interphase embedded in an infinite medium. The latter is under a remote axisymmetric loading. The complete solution of this problem requires three fundamental solutions, which are obtained by the Papkovich-Neuber displacement potentials and the expansion formulae for spheroidal harmonics. New displacement potentials are given when the remote loading is a longitudinal shear. The influence of the orientation and aspect ratio of the inhomogeneity and the influence of the remote stress ratio on the stress concentrations at the interfaces and the von Mises equivalent stress in the inhomogeneity are studied. It is found that the interphase between the inhomogeneity and the surrounding medium significantly alters the stress distribution in, and around, the inhomogeneity. In addition to the general solution for an inhomogeneity with an interphase, the stress field exterior to a spheroidal inhomogeneity without an interphase (the Eshelby problem) is presented in a simple form. It is pointed out that the solution of a spheroidal inhomogeneity with an interphase in an infinite medium subjected to an arbitrary uniform eigenstrain, or a combination of a uniform eigenstrain and an arbitrary remote mechanical loading, can be obtained using the procedure developed in this paper.

MSC:

74A10 Stress
74E05 Inhomogeneity in solid mechanics
74G05 Explicit solutions of equilibrium problems in solid mechanics
Full Text: DOI

References:

[1] Cherkaoui, M., Sabar, H. & Berveiller, M. 1995 Elastic composites with coated reinforcements: a micromechanical approach for nonhomothetic topology. <i>Int. J. Eng. Sci.</i> <b>33</b>, 829–843. · Zbl 0899.73309
[2] Christensen, R.M. & Lo, K.H. 1979 Solutions for effective shear properties in three phase sphere and cylinder models. <i>J. Mech. Phys. Solids</i> <b>27</b>, 315–330. · Zbl 0419.73007
[3] Edwards, R.H. & Chicago, H.L. 1951 Stress concentrations around spheroidal inclusions and cavities. <i>ASME J. Appl. Mech.</i> <b>18</b>, 19–30. · Zbl 0042.42201
[4] Eshelby, J.D. 1957 The determination of the elastic field of an ellipsoidal inclusion and related problems. <i>Proc. R. Soc. A</i> <b>241</b>, 376–396. · Zbl 0079.39606
[5] Eshelby, J.D. 1959 The elastic field outside an ellipsoidal inclusion. <i>Proc. R. Soc. A</i> <b>252</b>, 561–569. · Zbl 0092.42001
[6] Eshelby, J.D. 1961 Elastic inclusion and inhomogeneities. <i>Progress in solid mechanics</i> (eds. Sneddon, I.N. & Hill, R.), 2nd edn. pp. 222–246, Amsterdam: North-Holland
[7] Hobson, E.W. 1955 The theory of spherical and ellipsoidal harmonics. New York: Chelsea. · Zbl 0004.21001
[8] Kojima, Y., Usuki, A., Kwasumi, M., Okada, A., Fukushima, Y., Kurauchi, T. & Kamigaito, O. 1993 Mechanical-properties of nylon 6-clay hybrid. <i>J. Mater. Res.</i> <b>8</b>, 1185–1189.
[9] Li, C.Y. & Chou, T.W. 2003 Single-walled carbon nanotube as ultrahigh frequency nanomechanical resonators. <i>Phys. Rev. B</i> <b>68</b>, 073405.
[10] Li, C.Y. & Chou, T.W. 2003 Multiscale modeling of carbon nanotube reinforced polymer composites. <i>J. Nanosci. Nanotechnol.</i> <b>3</b>, 423–430.
[11] Liu, Y.J. & Chen, X.L. 2003 Evaluations of the effective material properties of carbon nanotube-based composites using a nanoscale representative volume element. <i>Mech. Mater.</i> <b>35</b>, 69–81.
[12] Love, A.E.H. 1927 A treatise on the mathematical theory of elasticity. 4th edn. New York: Dover. · JFM 53.0752.01
[13] Mamedov, A.A., Kotov, N.A., Prato, M., Guldi, D.M., Wicksted, J.P. & Hirsch, A. 2002 Molecular design of strong single-wall carbon nanotube/polyelectrolyte multilayer composites. <i>Nat. Mater.</i> <b>1</b>, 190–194.
[14] Mikata, Y. & Taya, M. 1985 Stress field in and around a coated short fiber in an infinite matrix subjected to uniaxial and biaxial loadings. <i>ASME J. Appl. Mech.</i> <b>52</b>, 19–24.
[15] Mikata, Y. & Taya, M. 1986 Thermal stress in a coated short fibre composite. <i>ASME J. Appl. Mech.</i> <b>53</b>, 681–689.
[16] Mura, T. 1987 Micromechanics of defects in solids. Dordrecht: Martinus Nijhoff. · Zbl 0652.73010
[17] Mura, T., Jasiuk, I. & Tsuchida, E. 1985 The stress field of a sliding inclusion. <i>Int. J. Solids Struct.</i> <b>21</b>, 1165–1179.
[18] Ostoja-Starzewski, M., Jasiuk, I., Wang, W. & Alzebdeh, K. 1996 Composites with functionally graded interfaces: meso-continuum concept and effective transverse conductivity. <i>Acta Mater.</i> <b>44</b>, 2057–2066.
[19] Riccardi, A. & Montheillet, F. 1999 A generalized self-consistent method for solids containing randomly oriented spheroidal inclusions. <i>Acta Mech.</i> <b>133</b>, 39–56. · Zbl 0927.74018
[20] Ru, C.Q. 2000 Column bulking of multiwalled carbon nanotubes with interlayer radial displacements. <i>Phys. Rev. B</i> <b>62</b>, 16962–16967.
[21] Sadowsky, M.A., Sternberg, E. & Chicago, H.L. 1947 Stress concentration around an ellipsoidal cavity in an infinite body under arbitrary plane stress perpendicular to the axis of revolution of cavity. <i>ASME J. Appl. Mech.</i> <b>69</b>, A191–A201. · Zbl 0029.17103
[22] Segurado, J. & Llorca, J. 2002 A numerical approximation to the elastic properties of sphere-reinforced composites. <i>J. Mech. Phys. Solids</i> <b>50</b>, 2107–2121. · Zbl 1151.74335
[23] Shodja, H.M. & Sarvestani, A.S. 2001 Elastic fields in double inhomogeneity by the equivalent inclusion method. <i>ASME J. Appl. Mech.</i> <b>68</b>, 3–10. · Zbl 1110.74676
[24] Tsuchida, E. & Mura, T. 1983 The stress field in an elastic half space having a spheroidal inhomogeneity under all-around tension parallel to the plane boundary. <i>ASME J. Appl. Mech.</i> <b>50</b>, 807–816. · Zbl 0528.73009
[25] Tsuchida, E., Arai, Y., Nakazawa, K. & Jasiuk, I. 2000 The elastic stress field in a half space containing a prolate spheroidal inhomogeneity subject to pure shear eigenstrain. <i>Mater. Sci. Eng. A</i> <b>285</b>, 338–344.
[26] Wang, J. & Pyrz, R. 2004 Prediction of the overall moduli of layered silicate-reinforced nanocomposites. Part I. Basic theory and formulas. <i>Compos. Sci. Tech.</i> <b>64</b>, 925–934.
[27] Wang, J. & Pyrz, R. 2004 Prediction of the overall moduli of layered silicate-reinforced nanocomposites. Part II. Analyses. <i>Compos. Sci. Tech.</i> <b>64</b>, 935–944.
[28] Zhang, P., Huang, Y., Geubelle, P.H., Klein, P.A. & Hwang, K.C. 2002 The elastic modulus of single-wall carbon nanotubes: a continuum analysis incorporating interatomic potentials. <i>Int. J. Solids Struct.</i> <b>39</b>, 3893–3906. · Zbl 1049.74753
[29] Zheng, Q.S. & Du, D.X. 2001 An explicit and universally applicable estimate for the effective properties of multiphase composites which accounts for inclusion distribution. <i>J. Mech. Phys. Solids</i> <b>49</b>, 2765–2788. · Zbl 1021.74037
[30] Zhong, Z. & Meguid, S.A. 1999 On the imperfectly bonded spherical inclusion problem. <i>ASME J. Appl. Mech.</i> <b>66</b>, 839–846.
[31] Huang, N.C. & Korobeinik, M.Y. 2001 Interfacial debonding of a spherical inclusion embedded in an infinite medium under remote stress. <i>Int. J. Fract.</i> <b>107</b>, 11–30.
[32] Jasiuk, I. 1986 The sliding inclusion in three-dimensional elasticity. Ph.D. thesis, Northwestern University, Evanston, IL.
[33] Jasiuk, I., Tsuchida, E. & Mura, T. 1987 The sliding inclusion under shear. <i>Int. J. Solids Struct.</i> <b>23</b>, 1373–1385. · Zbl 0625.73016
[34] Jayaraman, K. & Reifsnider, K.L. 1992 Residual stresses in a composite with continuously varying Young’s modulus in the fiber/matrix interphase. <i>J. Compos. Mater.</i> <b>26</b>, 770–791.
[35] Ju, J.W. & Sun, L.Z. 1999 A novel formulation for the exterior-point Eshelby’s tensor of an ellipsoidal inclusion. <i>ASME J. Appl. Mech.</i> <b>66</b>, 570–574.
[36] Karihaloo, B.L. & Viswanathan, K. 1988 A partially debonded ellipsoidal inclusion in an elastic medium. Part I. Stress and displacement fields. <i>Mech. Mater.</i> <b>7</b>, 191–197.
[37] Karihaloo, B.L. & Viswanathan, K. 1988 A partially debonded ellipsoidal inclusion in an elastic medium. Part II. Stress intensity factors and debond opening displacement. <i>Mech. Mater.</i> <b>7</b>, 199–203.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.