×

The curvature-induced gauge potential and the geometric momentum for a particle on a hypersphere. (English) Zbl 1471.81034

Summary: A particle that is constrained to freely move on a hyperspherical surface in an \(N(\geq 2)\) dimensional flat space experiences a curvature-induced gauge potential, whose form was given long ago [Y. Ohnuki and S. Kitakado, J. Math. Phys. 34, No. 7, 2827–2851 (1993; Zbl 0789.22045)]. We demonstrate that the momentum for the particle on the hypersphere is the geometric one including the gauge potential and its components obey the commutation relations \(\left[p_i , p_j\right]=-i\hbar J_{ij}/r^2\), in which \(\hbar\) is the Planck’s constant, and \(p_i(i,j=1,2,3,\dots N)\) denotes the \(i\)-th component of the geometric momentum, and \(J_{ij}\) specifies the \(ij\)-th component of the generalized angular momentum containing both the orbital part and the coupling of the generators of continuous rotational symmetry group \(SO(N-1)\) and curvature, and \(r\) denotes the radius of the \(N-1\) dimensional hypersphere.

MSC:

81Q35 Quantum mechanics on special spaces: manifolds, fractals, graphs, lattices
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
81Q60 Supersymmetry and quantum mechanics
14J70 Hypersurfaces and algebraic geometry
81S05 Commutation relations and statistics as related to quantum mechanics (general)
81S08 Canonical quantization
81R05 Finite-dimensional groups and algebras motivated by physics and their representations
22E70 Applications of Lie groups to the sciences; explicit representations

Citations:

Zbl 0789.22045

References:

[1] Brill, D. R.; Wheeler, J. A., Rev. Modern Phys., 29, 465-479 (1957) · Zbl 0078.43503
[2] Blagojevic, M.; Hehl, F. W., Gauge Theories of Gravitation, 365-380 (2013), Imperial College Press: Imperial College Press London · Zbl 1282.83046
[3] Vozmediano, M. A.H.; Katsnelson, M. I.; Guinea, F., Phys. Rep., 496, 109-148 (2010)
[4] Iorio, A.; Lambiase, G., Phys. Rev. D, 90, Article 025006 pp. (2014)
[5] Weinberg, S., The Quantum Theory of Fields, Vol. 1, 369-371 (1995), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0959.81002
[6] Quigg, C., Gauge of Theories of Strong, Weak and Electromagnetic Interactions, 57-70 (2014), Princeton University Press
[7] Liu, Q. H.; Tong, C. L.; Lai, M. M., J. Phys. A, 40, 4161-4168 (2007) · Zbl 1114.81038
[8] Liu, Q. H.; Tang, L. H.; Xun, D. M., Phys. Rev. A, 84, Article 042101 pp. (2011)
[9] Liu, Q. H., J. Math. Phys., 54, Article 122113 pp. (2013) · Zbl 1285.81040
[10] Liu, Q. H., J. Phys. Soc. Japan, 82, Article 104002 pp. (2013)
[11] Xun, D. M.; Liu, Q. H.; Zhu, X. M., Ann. Phys., NY, 338, 123-133 (2013) · Zbl 1348.81279
[12] Xun, D. M.; Liu, Q. H., Ann. Phys., NY, 341, 132-141 (2014) · Zbl 1342.81212
[13] Zhang, Z. S.; Xiao, S. F.; Xun, D. M.; Liu, Q. H., Commun. Theor. Phys., 63, 19-24 (2015) · Zbl 1305.81097
[14] Hu, L. D.; Lian, D. K.; Liu, Q. H., Eur. Phys. J. C, 76, 655 (2016)
[15] Lian, D. K.; Hu, L. D.; Liu, Q. H., Ann. Phys., 530, Article 1700415 pp. (2018) · Zbl 1543.81145
[16] Liu, Q. H.; Li, Z.; Zhou, X. Y.; Yang, Z. Q.; Du, W. K., Eur. Phys. J. C, 79, 712 (2019)
[17] Yang, Z. Q.; Zhou, X. Y.; Li, Z.; Du, W. K.; Liu, Q. H., Phys. Lett. A, 384, Article 126604 pp. (2020) · Zbl 1448.81317
[18] Li, Z.; Yang, X.; Liu, Q. H., Commun. Theor. Phys., 73, Article 025104 pp. (2021) · Zbl 1520.81079
[19] Ohnuki, Y.; Kitakado, S., J. Math. Phys., 34, 2827 (1993) · Zbl 0789.22045
[20] Fujii, K.; Ogawa, N., Progr. Theoret. Phys., 89, 575 (1993)
[21] McMullan, D.; Tsutsui, I., Ann. Phys., NY, 237, 269 (1995) · Zbl 0811.58069
[22] Maraner, P., Ann. Phys., NY, 246, 325-346 (1996) · Zbl 0870.53057
[23] Fujii, K.; Ogawa, N.; Uchiyama, S.; Chepilko, N. M., Internat. J. Modern Phys. A, 12, 5235-5277 (1997) · Zbl 0902.53052
[24] Ogawa, N., Modern Phys. Lett. A, 12, 1583-1588 (1997) · Zbl 1022.81599
[25] Hirayama, M.; Zhang, H.-M.; Hamada, T., Progr. Theoret. Phys., 97, 679-689 (1997)
[26] Ikemori, H.; Kitakdo, S.; Nakatani, H.; Otsu, H.; Sato, T., Modern Phys. Lett. A, 13, 15-21 (1998) · Zbl 0968.81039
[27] Schuster, P. C.; Jaffe, R. L., Ann. Phys., NY, 307, 132-143 (2003) · Zbl 1037.81034
[28] Stockhofe, J.; Schmelcher, P., Phys. Rev. A., 89, Article 033630 pp. (2014)
[29] Cohen-Tannoudji, C.; Diu, B.; Laloe, F., Quantum Mechanics, Vol. Two, 315-328 (1977), John Wiley & Sons: John Wiley & Sons NY
[30] Hatano, N.; Shirasaki, R.; Nakamura, H., Phys. Rev. A, 75, Article 032107 pp. (2007)
[31] Yang, C. N., Phys. Today, 33, 42-49 (1980)
[32] Weinberg, S., Lectures on Quantum Mechanics, 335-340 (2015), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1335.81005
[33] Greenshields, C. R.; Stamps, R. L.; Franke-Arnold, S.; Barnett, S. M., Phys. Rev. Lett., 113, Article 240404 pp. (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.