×

Stochastic evolution systems with constant coefficients. (English) Zbl 1311.60072

The authors consider the equation \[ u(t)=u_0+\int_0^t(Au(s)+f(s))\,ds+\int_0^t(Bu(s)+g(s))\,dw(s) \] on \([0,T]\), where \(w\) is a standard Brownian motion and \(A\) and \(B\) are pseudo-differential operators on \(H_\infty=\bigcup_{\gamma<0}H^\gamma(\mathbb R^d;\mathbb R^N)\) with constant coefficients whose symbols are continuous and have at most a polynomial growth. The equation is called well-posed if, for every \(r\in\mathbb R\), \(u_0\in H^r(\mathbb R^d;\mathbb R^N)\), \(f,g\in L^2(0,T;H^r(\mathbb R^d;\mathbb R^N))\), there exists a unique solution \(u\in L^2(0,t;H^\gamma(\mathbb R^d;\mathbb R^N))\) for some \(\gamma\leq r\) and an apriori estimate \[ \mathbb E\,\|u(t)\|^2_\gamma\leq C\left(\|u_0\|^2_r+\int_0^t\|f(s)\|^2_r\,ds+\int_0^t\|g(s)\|^2_r\,ds\right),\qquad 0\leq t\leq T \] holds. An \((N^2\times N^2)\)-matrix \(M(y)\) is defined using the symbols of the operators \(A\) and \(B\) and it is proved that well-posedness holds if and only if \(\sup_{0\leq t\leq T}\|\exp\{t M(y)\}\|\) grows at most polynomially in \(y\in\mathbb R^d\) or, equivalently, if the spectral abscissa of \(M(y)\) (i.e., the largest real part of the eigenvalue of \(M(y)\)) is bounded by \(C_0\ln(2+|y|)\). Based on this result, the authors define several subclasses of the studied equation, introduce finer definitions of well-posedness and stability and determine the links between them.

MSC:

60H15 Stochastic partial differential equations (aspects of stochastic analysis)
35E15 Initial value problems for PDEs and systems of PDEs with constant coefficients
35S05 Pseudodifferential operators as generalizations of partial differential operators
Full Text: DOI

References:

[1] Alòs, Elisa, León, Jorge A., Nualart, David: Stochastic heat equation with random coefficients. Probab. Theory Relat. Fields 115(1), 41–94 (1999) · Zbl 0939.60065 · doi:10.1007/s004400050236
[2] Anderson, B.D.O., Jury, E.I.: A ”simplest possible” property of the generalized Routh-Hurwitz conditions. SIAM J. Control Optim. 15(1), 177–184 (1977) · Zbl 0364.30006 · doi:10.1137/0315014
[3] Botchev, M.A., Grimm, V., Hochbruck, M.: Residual, restarting, and Richardson iteration for the matrix exponential. SIAM J. Sci. Comput. 35(3), A1376–A1397 (2013) · Zbl 1278.65052 · doi:10.1137/110820191
[4] Brewer, J.W.: Kronecker products and matrix calculus in system theory. IEEE Trans. Circuits Syst. 25(9), 772–781 (1978) · Zbl 0397.93009 · doi:10.1109/TCS.1978.1084534
[5] Egorov, YuV, Shubin, M.A.: Foundations of the Classical Theory of Partial Differential Equations. Springer, Berlin (1998) · Zbl 0895.35003
[6] Feng, J., Lam, J., Wei, Y.: Spectral properties of sums of certain Kronecker products. Linear Algebra Appl. 431(9), 1691–1701 (2009) · Zbl 1191.15007 · doi:10.1016/j.laa.2009.06.004
[7] Friedman, A.: Partial Differential Equations of Parabolic Type. Prentice-Hall, Englewood Cliffs (1964) · Zbl 0144.34903
[8] Gīhman, Ĭ.Ī., Skorohod, A.V.: Stochastic differential equations. Springer, New York (1972)
[9] Godunov, S.K.: Ordinary Differential Equations with Constant Coefficient, Translations of Mathematical Monographs, vol. 169. American Mathematical Society, Providence (1997) · Zbl 0884.34001
[10] Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1994) · Zbl 0801.15001
[11] Khasminskii, R.: Stochastic stability of differential equations. Stochastic Modelling and Applied Probability, vol. 66, 2nd edn. Springer, Heidelberg (2012) · Zbl 1259.60058
[12] Kim, K.-H., Lee, K.: A $${W}\^{n}_{2}$$ W 2 n -theory of stochastic parabolic partial differential systems on $$C\^{1}$$ C 1 -domains. Potential Anal. 38(3), 951–984 (2013) · Zbl 1266.60118 · doi:10.1007/s11118-012-9302-0
[13] Krylov, N.V.: An analytic approach to SPDEs, stochastic partial differential equations: six perspectives. Math. Surv. Monogr. Am. Math. Soc. 64, 185–242 (1999) · Zbl 0933.60073 · doi:10.1090/surv/064/05
[14] Lax, P.D.: Hyperbolic partial differential equations, Courant Lecture Notes in Mathematics, vol. 14. New York University, Courant Institute of Mathematical Sciences, New York (2006) · Zbl 1113.35002
[15] Marden, M.: Geometry of polynomials. Mathematical Surveys. American Mathematical Society, Providence (1996)
[16] Nechepurenko, YuM: On a bound for the norm of a matrix exponential. Dokl. Akad. Nauk 377(5), 597–600 (2001) · Zbl 1046.15023
[17] Nechepurenko, YuM: An estimate for the norm of a matrix exponential in terms of the solution of the Lyapunov equation and the bounds of the Hausdorff set of the matrix. Zh. Vychisl. Mat. Mat. Fiz. 42(2), 131–141 (2002) · Zbl 1055.60075
[18] Pao, C.V.: Logarithmic derivates of a square matrix. Linear Algebra Appl. 6, 159–164 (1973) · Zbl 0246.15021 · doi:10.1016/0024-3795(73)90015-3
[19] Rozovskiĭ, B.L.: Stochastic evolution systems. Mathematics and its Applications (Soviet Series), vol. 35. Kluwer Academic, Dordrecht (1990)
[20] Ström, T.: On logarithmic norms. SIAM J. Numer. Anal. 12(5), 741–753 (1975) · Zbl 0321.15012 · doi:10.1137/0712055
[21] Trefethen, L.N., Embree, M.: Spectra and Pseudospectra. Princeton University Press, Princeton (2005) · Zbl 1085.15009
[22] Ye, Q.: Error bounds for the Lanczos methods for approximating matrix exponentials. SIAM J. Numer. Anal. 51(1), 68–87 (2013) · Zbl 1276.65027 · doi:10.1137/11085935X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.