×

Superconvergence analysis of two-grid FEM for Maxwell’s equations with a thermal effect. (English) Zbl 1446.65183

Summary: Based on two-grid algorithm, we develop the superconvergence analysis of fully-discrete scheme with the lowest-order Nédélec element and Crank-Nicolson scheme for the magneto-heat coupling model, which is also considered as Maxwell’s equations with a thermal effect. Then, main process of numerical analysis has two parts: On one hand, we utilize Newton-type Taylor expansion on superconvergent solutions for those nonlinear terms on coarse mesh, differing from the numerical solution, which makes our given two-grid method successful. On the other hand, we prove the solutions on the fine mesh to be higher accuracy by the postprocessing interpolation technique. Such a design is conducive to improving the computational accuracy in space and decreasing time consumption simultaneously. By employing the skill, we can obtain the convergent rate of \(O(\Delta t^2+h^2+H^3)\), which means that the space mesh size should satisfy \(h=O(H^{\frac{3}{2}})\). Finally, the numerical example is presented to verify the theoretical results.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
78M10 Finite element, Galerkin and related methods applied to problems in optics and electromagnetic theory
78M20 Finite difference methods applied to problems in optics and electromagnetic theory
65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs
65D05 Numerical interpolation
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
78A25 Electromagnetic theory (general)
76V05 Reaction effects in flows
76W05 Magnetohydrodynamics and electrohydrodynamics
Full Text: DOI

References:

[1] Xu, J., A novel two-grid method for semilinear elliptic equations, SIAM J. Sci. Comput., 15, 1, 231-237 (1994) · Zbl 0795.65077
[2] Wang, W., Long-time behavior of the two-grid finite element method for fully discrete semilinear evolution equations with positive memory, J. Comput. Appl. Math., 250, 161-174 (2013) · Zbl 1285.65064
[3] Zeng, J.; Chen, Y.; Hu, H., Two-grid method for compressible miscible displacement problem by CFEMCMFEM, J. Comput. Appl. Math., 337, 175-189 (2018) · Zbl 1444.76116
[4] Zhong, L.; Shu, S.; Wang, J.; Xu, J., Two-grid methods for time-harmonic Maxwell equations, Numer. Linear Algebra Appl., 20, 1, 93-111 (2013) · Zbl 1289.78014
[5] Durango, G.; Novo, J., Two-grid mixed finite-element approximations to the Navier-Stokes equations based on a Newton-type step, J. Sci. Comput., 74, 1, 456-473 (2018) · Zbl 1404.65166
[6] Li, J.; Huang, Y., Time-Domain Finite Element Methods for Maxwell’s Equations in Metamaterials (2013), Springer-Verlag: Springer-Verlag Berlin · Zbl 1304.78002
[7] Lin, Q.; Lin, J., Finite Element Methods: Accuracy and Improvement (2006), Science Press: Science Press Beijing
[8] Lin, Q.; Yan, N., The Construction and Analysis of High Accurate Finite Element Methods (in Chinese) (1996), Hebei University Press: Hebei University Press Baoding
[9] Li, X.; Mao, S.; Yang, K.; Zheng, W., On the magneto-heat coupling model for large power transformers, Commun. Comput. Phys., 22, 683-711 (2017) · Zbl 1488.35299
[10] Cheng, Z.; Takahashi, N.; Forghani, B., Electromagnetic and Thermal Field Modeling and Application in Electrical Engineering (2009), Science Press: Science Press Beijing
[11] Demkowic, L., Frontiers: Three Dimensional Elliptic and Maxwell Problems with Applications (2008), Chapman & Hall/CRC · Zbl 1148.65001
[12] Beck, R.; Hiptmair, R.; Hoppe, R.; Wohlmuth, B., Residual based a posteriori error estimators for eddy current computation, ESAIM Math. Model. Numer. Anal., 34, 1, 159-182 (2000) · Zbl 0949.65113
[13] Ciarlet, P.; Zou, J., Fully discrete finite element approaches for time-dependent Maxwell’s equations, Numer. Math., 82, 2, 193-219 (1999) · Zbl 1126.78310
[14] Ledger, P.; Zaglmayr, S., \( h p\) -Finite element simulation of three-dimensional eddy current problems on multiply connected domains, Comput. Methods Appl. Mech. Engrg., 199, 49-52, 3386-3401 (2010) · Zbl 1225.78010
[15] Zheng, W.; Chen, Z.; Wang, L., An adaptive finite element method for the \(H - \psi\) formulation of time-dependent eddy current problems, Numer. Math., 103, 4, 667-689 (2006) · Zbl 1099.65092
[16] Chen, Z.; Wang, L.; Zheng, W., An adaptive multilevel method for time-harmonic Maxwell equations with singularities, SIAM J. Sci. Comput., 29, 1, 118-138 (2007) · Zbl 1136.78013
[17] Duan, H.; Zheng, W., A delta-regularization finite element method for a double curl problem with divergence-free constraint, SIAM J. Numer. Anal., 50, 6, 3208-3230 (2012) · Zbl 1261.65116
[18] Jiang, X.; Zheng, W., An efficient eddy current model for nonlinear Maxwell equations with laminated conductors, SIAM J. Appl. Math., 72, 4, 1021-1040 (2012) · Zbl 1252.35255
[19] Jiang, X.; Zheng, W., Homogenization of quasi-static Maxwell’s equations, Multiscale Model. Simul., 12, 1, 152-180 (2014) · Zbl 1314.35009
[20] Yin, H., Existence and regularity of a weak solution to Maxwell’s equations with a thermal effect, Math. Methods Appl. Sci., 29, 10, 1199-1213 (2006) · Zbl 1109.35110
[21] Nédélec, J.; Wolf, S., Homogenization of the problem of eddy currents in a transformer core, SIAM J. Numer. Anal., 26, 6, 1407-1424 (1989) · Zbl 0686.65089
[22] Bachinger, F.; Langer, U.; Schöberl, J., Numerical analysis of nonlinear multiharmonic eddy current problems, Numer. Math., 100, 4, 593-616 (2005) · Zbl 1122.78016
[23] Li, P.; Zheng, W., An \(\mathbf{H}-\psi\) formulation for the three-dimensional eddy current problem in laminated structures, J. Differential Equations, 254, 8, 3476-3500 (2013) · Zbl 1270.35258
[24] Slodička, M., A time discretization scheme for a non-linear degenerate eddy current model for ferromagnetic materials, IMA J. Numer. Anal., 26, 1, 173-187 (2006) · Zbl 1089.78026
[25] Chen, Z.; Wang, L.; Zheng, W., An adaptive multilevel method for time-harmonic Maxwell equations with singularities, SIAM J. Sci. Comput., 29, 1, 118-138 (2007) · Zbl 1136.78013
[26] Yao, C., The solvability of coupling the thermal effect and magnetohydrodynamics field with turbulent convection zone and the flow field, J. Math. Anal. Appl., 476, 2, 495-521 (2019) · Zbl 1448.76199
[27] Chen, Y.; Huang, Y., A multilevel method for finite element solutions for singular two-point boundary value problems, Nat. Sci. J. Xiangtan Univ., 16, 1, 23-26 (1994), (in Chinese) · Zbl 0802.65095
[28] Zhang, W.; Xu, J.; Zhong, L., Error estimates of the classical and improved two-grid methods, Adv. Appl. Math. Mech., 10, 4, 785-796 (2018) · Zbl 1488.65677
[29] Yao, C.; Lin, Y.; Wang, C.; Kou, Y., A third order linearized BDF scheme for Maxwell’s equations with nonlinear conductivity using finite element method, Int. J. Numer. Anal. Model., 14, 4-5, 511-531 (2017) · Zbl 1383.78044
[30] Huang, Q.; Jia, S.; Xu, F.; Xu, Z.; Yao, C., Solvability of wave propagation with Debye polarization in nonlinear Dielectric materials and its finite element methods approximation, Appl. Numer. Math. (2019) · Zbl 1477.78002
[31] Wang, L.; Zhang, Q.; Zhang, Z., Superconvergence analysis and PPR recovery of arbitrary order edge elements for Maxwell’s equations, J. Sci. Comput., 78, 2, 1207-1230 (2019) · Zbl 1417.65208
[32] Wang, P.; Ming, S.; Yao, C., Superconvergence analysis of nonconforming element approximation for 3D time-harmonic Maxwell’s equations, Appl. Numer. Math., 127, 40-55 (2018) · Zbl 1383.78043
[33] Qiao, Z.; Yao, C.; Jia, S., Superconvergence and extrapolation analysis of a nonconforming mixed finite element approximation for time-Harmonic Maxwell’s equations, J. Sci. Comput., 46, 1, 1-19 (2011) · Zbl 1230.78032
[34] Yao, C.; Wang, L., Nonconforming finite element methods for wave propagation in metamaterials, Numer. Math.-Theory ME, 10, 1, 145-166 (2017) · Zbl 1399.65341
[35] Huang, Y.; Li, H.; Wu, C.; Yang, W., Superconvergence analysis for linear tetrahedral edge elements, J. Sci. Comput., 62, 1, 122-145 (2015) · Zbl 1310.78015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.