×

Direct determination of multi-axial elastic potentials for incompressible elastomeric solids: an accurate, explicit approach based on rational interpolation. (English) Zbl 1343.74051

Summary: With a novel approach based on certain logarithmic invariants, we demonstrate that a multi-axial elastic potential for incompressible, isotropic rubber-like materials may be obtained directly from two onedimensional elastic potentials for uniaxial case and simple shear case, in a sense of exactly matching finite strain data for four benchmark tests, including uniaxial extension, simple shear, bi-axial extension, and planestrain extension. As such, determination of multi-axial elastic potentials may be reduced to that of two onedimensional elastic potentials. We further demonstrate that the latter two may be obtained by means of rational interpolating procedures for uniaxial data and shear data displaying strain-stiffening effects. Numerical examples are presented in fitting Treloar’s data and other data.

MSC:

74S25 Spectral and related methods applied to problems in solid mechanics
74B05 Classical linear elasticity
Full Text: DOI

References:

[1] Anand, L., On H. hencky’s approximate strain-energy function for moderate deformations, J. Appl. Mech., 46, 78-82, (1979) · Zbl 0405.73032 · doi:10.1115/1.3424532
[2] Anand, L., Moderate deformations in extension-torsion of incompressible isotropic elastic materials, J. Mech. Phys. Solids, 34, 293-304, (1986) · doi:10.1016/0022-5096(86)90021-9
[3] Arruda, E.M.; Boyce, M.C., A three-dimensional constitutive model for the large stretch behaviour of rubber elastic materials, J. Mech. Phys. Solids, 41, 389-412, (1993) · Zbl 1355.74020 · doi:10.1016/0022-5096(93)90013-6
[4] Beatty, M.F., Topic in finite elasticity: hyper-elasticity of rubber, elastomers, and biological tissues-with examples, Appl. Mech. Rev., 40, 1699-1733, (1987) · doi:10.1115/1.3149545
[5] Beatty, M.F., On constitutive models for limited elastic, molecular based materials, Math. Mech. Solids, 13, 375-387, (2008) · Zbl 1175.74015 · doi:10.1177/1081286507076405
[6] Boyce, M.C.; Arruda, E.M., Constitutive models of rubber elasticity: a review, Rubber Chem. Technol., 73, 504-523, (2000) · doi:10.5254/1.3547602
[7] Charlton, D.J.; Yang, J., A review of methods to characterize rubber elastic behavior for use in finite element analysis, Rubber Chem. Technol., 67, 481-503, (1994) · doi:10.5254/1.3538686
[8] Criscione, S.C., Direct tensor expression for natural strain and fast, accurate approximation, Comput. Struct., 80, 1895-1905, (2002) · doi:10.1016/S0045-7949(02)00208-0
[9] Criscione, S.C., Rivlin’s representation formula is ill-conceived for the determination of response functions via biaxial testing, J. Elast., 70, 129-147, (2003) · Zbl 1073.74015 · doi:10.1023/B:ELAS.0000005586.01024.95
[10] Criscione, J.C.; Humphrey, J.D.; Douglas, A.S.; Hunter, W.C., An invariant basis for natural strain which yields orthogonal stress response terms in isotropic hyper-elasticity, J. Mech. Phys. Solids, 48, 2445-2465, (2000) · Zbl 0983.74012 · doi:10.1016/S0022-5096(00)00023-5
[11] Diani, J.; Gilormini, P., Combining the logarithmic strain and the full-network model for a better understanding of the hyper-elastic behaviour of rubber-like materials, J. Mech. Phys. Solids, 53, 2579-2596, (2005) · Zbl 1176.74025 · doi:10.1016/j.jmps.2005.04.011
[12] Drozdov, A.D.; Gottlieb, M., Ogden-type constitutive equations in finite elasticity of elastomers, Acta Mech., 183, 231-252, (2006) · Zbl 1158.74316 · doi:10.1007/s00707-005-0292-5
[13] Drozdov, A.D., Polymer networks with slip-links: 1. constitutive equations for an uncross-linked network, Continuum Mech. Therm., 18, 157-170, (2006) · Zbl 1160.74314 · doi:10.1007/s00161-006-0020-y
[14] Drozdov, A.D., Polymer networks with slip-links: 2. constitutive equations for a cross-linked network, Continuum Mech. Therm., 18, 171-193, (2006) · Zbl 1160.74315 · doi:10.1007/s00161-006-0021-x
[15] Eterovic, A.L.; Bathe, K.J., A hyperelastic-based large strain elasto-plastic constitutive formulation with combined isotropic-kinematic hardening using the logarithmic stress and strain measures, Int. J. Numer. Methods Eng., 30, 1099-1115, (1990) · Zbl 0714.73035 · doi:10.1002/nme.1620300602
[16] Fitzjerald, S., A tensorial hencky measure of strain and strain rate for finite deformation, J. Appl. Phys., 51, 5111-5115, (1980) · doi:10.1063/1.327428
[17] Fu Y.B., Ogden R.W.: Nonlinear Elasticity. Cambridge University Press, Cambridge (2001) · Zbl 0962.00003 · doi:10.1017/CBO9780511526466
[18] Gendy, A.S.; Saleeb, A.F., Nonlinear material parameter estimation for characterizing hyperelastic large strain models, Comput. Mech., 25, 66-77, (2001) · Zbl 0988.74080 · doi:10.1007/s004660050016
[19] Gent, A.N., A new constitutive relation for rubber, Rubber Chem. Technol., 69, 59-61, (1996) · doi:10.5254/1.3538357
[20] Gent, A.N., Extensibility of rubber under different types of deformation, J. Rheol., 49, 271-275, (2005) · doi:10.1122/1.1835343
[21] Green A.E., Zerna W.: Theoretical Elasticity. Clarendon Press, Oxford (1968) · Zbl 0155.51801
[22] Hartmann, S., Parameter estimation of hyper-elasticity relations of generalized polynomial-type with constraint conditions, Int. J. Solids Struct., 38, 7999-8018, (2001) · Zbl 1032.74014 · doi:10.1016/S0020-7683(01)00018-X
[23] Haupt P.: Continuum Mechanics and Theory of Materials. Springer, Berlin (2002) · Zbl 0993.74001 · doi:10.1007/978-3-662-04775-0
[24] Hencky, H., Über die form des elastizitätsgesetzes bei ideal elastischen stoffen, Z. Techn. Phys., 9, 215-220, (1928) · JFM 54.0851.03
[25] Hencky, H., The law of elasticity for isotropic and quasi-isotropic substances by finite deformations, J. Rheol., 2, 169-176, (1931) · doi:10.1122/1.2116361
[26] Hencky, H., The elastic behavior of vulcanized rubber, Rubber Chem. Technol., 6, 217-224, (1933) · doi:10.5254/1.3547545
[27] Hill, R., Constitutive inequalities for simple materials, J. Mech. Phys. Solids, 16, 229-242, (1968) · Zbl 0162.28702 · doi:10.1016/0022-5096(68)90031-8
[28] Hill, R., Constitutive inequalities for isotropic elastic solids under finite strain, Proc. R. Soc. Lond. A, 326, 131-147, (1970) · Zbl 0229.73004 · doi:10.1098/rspa.1972.0001
[29] Hill, R., Aspects of invariance in solid mechanics, Adv. Appl. Mech., 18, 1-75, (1978) · Zbl 0475.73026 · doi:10.1016/S0065-2156(08)70264-3
[30] Horgan, C.O.; Murphy, J.G., Limiting chain extensibility constitutive models of valanis-landel type, J. Elast., 86, 101-111, (2007) · Zbl 1106.74014 · doi:10.1007/s10659-006-9085-x
[31] Horgan, C.O.; Murphy, J.G., A generalization of hencky’s strain-energy density to model the large deformation of slightly compressible solid rubber, Mech. Mater., 41, 943-950, (2009) · doi:10.1016/j.mechmat.2009.03.001
[32] Horgan, C.O.; Saccomandi, G., Phenomenological hyper-elastic strain-stiffening constitutive models for rubber, Rubber Chem. Technol., 79, 1-18, (2006) · doi:10.5254/1.3547924
[33] Kakavas, P.A., A new development of the strain energy function for hyper-elastic materials using a logarithmic strain approach, J. Appl. Polym. Sci., 77, 660-672, (2000) · doi:10.1002/(SICI)1097-4628(20000718)77:3<660::AID-APP21>3.0.CO;2-A
[34] Lion, A., A constitutive model for carbon black filled rubber: experimental investigations and mathematical representation, Continuum Mech. Therm., 8, 153-169, (1994) · doi:10.1007/BF01181853
[35] Miehe, C.; Apel, N.; Lambrecht, M., Anisotropic additive plasticity in the logarithmic strain space: modular kinematic formulation and implementation based on incremental minimization principles for standard materials, Comput. Meth. Appl. Mech. Eng., 191, 5383-5425, (2002) · Zbl 1083.74518 · doi:10.1016/S0045-7825(02)00438-3
[36] Miehe, C.; Göktepe, S.; Lulei, F., A micro-macro approach to rubber-like materials-part 1: the non-affine micro-sphere model of rubber elasticity, J. Mech. Phys. Solids, 52, 2617-2660, (2004) · Zbl 1091.74008 · doi:10.1016/j.jmps.2004.03.011
[37] Muhr, A.H., Modeling the stress-strain behaviour of rubber, Rubber Chem. Technol., 78, 391-425, (2005) · doi:10.5254/1.3547890
[38] Ogden R.W.: Non-Linear Elastic Deformations. Ellis Horwood, Chichester (1984) · Zbl 0541.73044
[39] Ogden, R.W.; Saccomandi, G.; Sgura, I., Fitting hyperelastic models to experimental data, Comput. Mech., 34, 484-502, (2004) · Zbl 1109.74320 · doi:10.1007/s00466-004-0593-y
[40] Perić, D.; Owen, D.R.J.; Honnor, M.E., A model for finite strain elastoplasticity based on logarithmic strains: computational issues, Comput. Methods Appl. Mech. Eng., 94, 35-61, (1992) · Zbl 0747.73020 · doi:10.1016/0045-7825(92)90156-E
[41] Treloar L.R.G.: The Physics of Rubber Elasticity. Oxford University Press, Oxford (1975) · Zbl 0347.73042
[42] Twizell, B.H.; Ogden, R.W., Non-linear optimization of the material constants in ogden’s stress-deformation function for incompressible isotropic elastic materials, J. Aust. Math. Soc. B, 24, 424-434, (1983) · Zbl 0504.73025 · doi:10.1017/S0334270000003787
[43] Vahapoglu, V.; Karadenitz, S., Constitutive equations for isotropic rubber-like materials using phenomenological approach: a bibliography (1930-2003), Rubber Chem. Technol., 79, 489-499, (2005) · doi:10.5254/1.3547947
[44] Xiao, H., Hencky strain and hencky model: extending history and ongoing tradition, Multidiscip. Model. Mater. Struct., 1, 1-52, (2005)
[45] Xiao, H.: An explicit, direct approach to obtaining multi-axial elastic potentials that exactly match data of four benchmark tests for rubbery materials-part 1: incompressible deformations. Acta Mech. (2012). doi:10.1007/s00707-012-0684-2 · Zbl 1356.74007
[46] Xiao, H.; Bruhns, O.T.; Meyers, A., Basic issues concerning finite strain measures and isotropic stress-deformation relations, J. Elast., 67, 1-23, (2002) · Zbl 1089.74512 · doi:10.1023/A:1022597823377
[47] Xiao, H.; Bruhns, O.T.; Meyers, A., Explicit dual stress-strain and strain-stress relations of incompressible isotropic hyper-elastic solids via deviatoric hencky strain and Cauchy stress, Acta Mech., 168, 21-33, (2004) · Zbl 1063.74014 · doi:10.1007/s00707-004-0074-5
[48] Xiao, H.; Bruhns, O.T.; Meyers, A., Elastoplasticity beyond small deformations, Acta Mech., 182, 31-111, (2006) · Zbl 1116.74005 · doi:10.1007/s00707-005-0282-7
[49] Xiao, H., Chen, L.S.: Hencky’s logarithmic strain measure and dual stress-strain and strain-stress relations in isotropic finite hyper-elasticity. Int. J. Solids Struct. 40, 1455-1463 (2003) · Zbl 1032.74517
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.