×

Herglotz-type vakonomic dynamics and its Noether symmetry for nonholonomic constrained systems. (English) Zbl 1543.70012

Summary: In this paper, Herglotz-type vakonomic dynamics and Noether theory of nonholonomic systems are studied. Firstly, Herglotz-type vakonomic dynamical equations for nonholonomic systems are derived on the premise of Herglotz variational principle. Secondly, in terms of the Herglotz-type vakonomic dynamical equations, the Noether symmetry of Herglotz-type vakonomic dynamics is explored, and the Herglotz-type vakonomic dynamical Noether theorems and their inverse theorems are deduced. Finally, the conservation laws of Appell-Hamel case with non-conservative forces are analyzed to show the validity of our results.
©2024 American Institute of Physics

MSC:

70H30 Other variational principles in mechanics
70G75 Variational methods for problems in mechanics
70H33 Symmetries and conservation laws, reverse symmetries, invariant manifolds and their bifurcations, reduction for problems in Hamiltonian and Lagrangian mechanics
49S05 Variational principles of physics
37J60 Nonholonomic dynamical systems
Full Text: DOI

References:

[1] Kozlov, V. V., The dynamics of systems with nonintegrable constraints I. The dynamics of systems with nonintegrable constraints II, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 3, 70-76, 1982
[2] Mei, F. X.; Wu, H. B.; Li, Y. M., A Brief History of Analytical Mechanics, 2019, Science Press: Science Press, Beijing
[3] Zhang, J. F., Noether’s theory of vacco dynamics, Appl. Math. Mech., 14, 7, 635-641, 1993 · Zbl 0778.70012 · doi:10.1007/BF02455388
[4] Martínez, S.; Cortés, J.; de León, M., The geometrical theory of constraints applied to the dynamics of vakonomic mechanical systems: The vakonomic bracket, J. Math. Phys., 41, 4, 2090-2120, 2000 · Zbl 0995.37048 · doi:10.1063/1.533229
[5] Cortés, J.; de León, M.; de Diego, D. M.; Martínez, S., Geometric description of vakonomic and nonholonomic dynamics. Comparison of solutions, SIAM J. Control Optim., 41, 5, 1389-1412, 2002 · Zbl 1210.70013 · doi:10.1137/s036301290036817x
[6] Martínez, S.; Cortés, J.; de León, M., Symmetries in vakonomic dynamics: Applications to optimal control, J. Geom. Phys., 38, 3-4, 343-365, 2001 · Zbl 1022.70014 · doi:10.1016/s0393-0440(00)00069-3
[7] Guo, Y. X.; Wang, Y.; Chee, G. Y.; Mei, F. X., Nonholonomic versus vakonomic dynamics on a Riemann-Cartan manifold, J. Math. Phys., 46, 6, 062902, 2005 · Zbl 1110.70018 · doi:10.1063/1.1928708
[8] Yuan-Cheng, L.; Hong-Xing, J.; Li-Li, X., Unified symmetry of Vacco dynamical systems, Chin. Phys., 16, 8, 2154, 2007 · doi:10.1088/1009-1963/16/8/002
[9] Jiménez, F.; de Diego, D. M., Continuous and discrete approaches to vakonomic mechanics, Rev. R. Acad. Cienc. Exactas, Fis. Nat. Ser. A. Math., 106, 1, 75-87, 2012 · Zbl 1261.37028 · doi:10.1007/s13398-011-0028-4
[10] Song, D.; Liu, C.; Guo, Y. X., The integral variational principles for embedded variation identity of high-order nonholonomic constrained systems, Acta Phys. Sin., 62, 9, 094501, 2013 · doi:10.7498/aps.62.094501
[11] Borisov, A. V.; Mamaev, I. S.; Bizyaev, I. A., Dynamical systems with non-integrable constraints, vakonomic mechanics, sub-Riemannian geometry, and non-holonomic mechanics, Russ. Math. Surv., 72, 5, 783, 2017 · Zbl 1446.70034 · doi:10.1070/rm9783
[12] Lemos, N. A., Complete inequivalence of nonholonomic and vakonomic mechanics, Acta Mech., 233, 1, 47-56, 2022 · Zbl 1502.70035 · doi:10.1007/s00707-021-03106-1
[13] Mei, F. X., Analytical Mechanics (Volume II), 2013, Beijing Institute of Technology Press
[14] Herglotz, G., Gesammelte Schriften, 1979, Vandenhoeck and Ruprecht: Vandenhoeck and Ruprecht, Göttingen · Zbl 0402.01010
[15] Georgieva, B.; Guenther, R., First Noether-type theorem for the generalized variational principle of Herglotz, Topol. Methods Nonlinear Anal., 20, 261-273, 2002 · Zbl 1032.58007 · doi:10.12775/tmna.2002.036
[16] Georgieva, B.; Guenther, R.; Bodurov, T., Generalized variational principle of Herglotz for several independent variables. First Noether-type theorem, J. Math. Phys., 44, 9, 3911-3927, 2003 · Zbl 1062.70038 · doi:10.1063/1.1597419
[17] Santos, S. P. S.; Martins, N.; Torres, D. F. M., An optimal control approach to Herglotz variational problems, 107-117, 2015, Springer
[18] Santos, S. P. S.; Martins, N.; Torres, D. F. M., Higher-order variational problems of Herglotz type, Vietnam J. Math., 42, 409-419, 2014 · Zbl 1305.49025 · doi:10.1007/s10013-013-0048-9
[19] Santos, S. P. S.; Martins, N.; Torres, D. F. M., Variational problems of Herglotz type with time delay: Dubois-Reymond condition and Noether’s first theorem, Discrete Contin. Dyn. Syst., 35, 9, 4593-4610, 2015 · Zbl 1335.49032 · doi:10.3934/dcds.2015.35.4593
[20] Almeida, R.; B Malinowska, A., Fractional variational principle of Herglotz, Discrete Contin. Dyn. Syst. B, 19, 8, 2367-2381, 2014 · Zbl 1304.49040 · doi:10.3934/dcdsb.2014.19.2367
[21] Almeida, R., Variational problems involving a Caputo-type fractional derivative, J. Opt. Theory Appl., 174, 1, 276-294, 2017 · Zbl 1379.26009 · doi:10.1007/s10957-016-0883-4
[22] Garra, R.; Taverna, G. S.; Torres, D. F. M., Fractional Herglotz variational principles with generalized Caputo derivatives, Chaos, Solitons Fractals, 102, 94-98, 2017 · Zbl 1374.49039 · doi:10.1016/j.chaos.2017.04.035
[23] Zhang, Y., Noether’s symmetry and conserved quantity for a time-delayed Hamiltonian system of Herglotz type, R. Soc. Open Sci., 5, 10, 180208, 2018 · doi:10.1098/rsos.180208
[24] Xu, X. X.; Zhang, Y., A new type of adiabatic invariant for fractional order non-conservative Lagrangian systems, Acta Phys. Sin., 69, 22, 220401, 2020 · doi:10.7498/aps.69.20200488
[25] Tian, X.; Zhang, Y., Noether’s theorem for fractional Herglotz variational principle in phase space, Chaos, Solitons Fractals, 119, 50-54, 2019 · Zbl 1448.70051 · doi:10.1016/j.chaos.2018.12.005
[26] Zhang, Y.; Tian, X., Conservation laws for Birkhoffian systems of Herglotz type, Chin. Phys. B, 27, 9, 090502, 2018 · doi:10.1088/1674-1056/27/9/090502
[27] Ding, J. J.; Zhang, Y., Conserved quantities and adiabatic invariants of fractional Birkhoffian system of Herglotz type, Chin. Phys. B, 29, 4, 044501, 2020 · doi:10.1088/1674-1056/ab6d51
[28] Tian, X.; Zhang, Y., Noether symmetry and conserved quantity for Hamiltonian system of Herglotz type on time scales, Acta Mech., 229, 3601-3611, 2018 · Zbl 1398.37049 · doi:10.1007/s00707-018-2188-1
[29] Zhang, Y.; Tian, X., Conservation laws of nonconservative nonholonomic system based on Herglotz variational problem, Phys. Lett. A, 383, 8, 691-696, 2019 · Zbl 1476.70058 · doi:10.1016/j.physleta.2018.11.034
[30] Dong, X. C.; Zhang, Y., Herglotz-type principle and first integrals for nonholonomic systems in phase space, Acta Mech., 234, 6083-6095, 2023 · Zbl 1531.70018 · doi:10.1007/s00707-023-03707-y
[31] de León, M.; Laínz, M.; Muñoz-Lecanda, M. C.; Román-Roy, N., Constrained Lagrangian dissipative contact dynamics, J. Math. Phys., 62, 12, 122902, 2021 · Zbl 1531.37058 · doi:10.1063/5.0071236
[32] de León, M.; Laínz, M.; Muñoz-Lecanda, M. C., Optimal control, contact dynamics and Herglotz variational problem, J. Nonlinear Sci., 33, 1, 9, 2023 · Zbl 1515.37108 · doi:10.1007/s00332-022-09861-2
[33] de León, M.; Laínz, M.; Muñoz-Lecanda, M. C., The Herglotz principle and vakonomic dynamics, 183-190, 2021, Springer · Zbl 1500.37043
[34] Zhang, Y., Recent advances on Herglotz’s generalized variational principle of nonconservative dynamics, Trans. Nanjing Univ. Aero. Astro., 37, 1, 13-26, 2020 · Zbl 1463.70007 · doi:10.16356/j.1005-1120.2020.01.002
[35] Mei, F. X., Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems, 1999, Science Press: Science Press, Beijing
[36] Noether, A. E., Invariant variation problems, Transp. Theory Stat. Phys., 1, 3, 186-207, 1971 · Zbl 0292.49008 · doi:10.1080/00411457108231446
[37] Zhang, Y.; Zhang, L. J.; Tian, X., Conservation laws for systems of non-standard Birkhoffians with fractional derivatives, Commun. Nonlinear Sci. Numer. Simul., 130, 107722, 2024 · Zbl 07793540 · doi:10.1016/j.cnsns.2023.107722
[38] Lutzky, M., Dynamical symmetries and conserved quantities, J. Phys. A: Math. Gen., 12, 7, 973-981, 1979 · Zbl 0413.70005 · doi:10.1088/0305-4470/12/7/012
[39] Zhang, Y.; Tian, X.; Zhai, X. H.; Song, C. J., Hojman conseved quantity for time scales Lagrange systems, Chinese J. Theor. Appl. Mech., 53, 10, 2814-2822, 2021 · doi:10.6052/0459-1879-21-413
[40] Mei, F. X., Formal invariance of Lagrange systems, J. Beijing Inst. Technol., 9, 2, 120-124, 2000 · Zbl 0987.70016 · doi:10.15918/j.jbit1004-0579.2000.02.002
[41] Mei, F. X., Symmetry and Conserved Quantities of Constrained Mechanical Systems, 2004, Beijing Institute of Technology Press
[42] Zhang, Y., Second-order nonholonomic Vacco dynamics and its Noether’s theorem, J. Suzhou Univ. Sci. Technol. (Nat. Sci.), 40, 3, 29-35, 2023
[43] Ning, D.; Jian-Hui, F., Lie symmetry and conserved quantities for nonholonomic Vacco dynamical systems, Commun. Theor. Phys., 46, 2, 265-268, 2006 · doi:10.1088/0253-6102/46/2/017
[44] Gu, S. L.; Zhang, H. B., Mei symmetry, Noether symmetry and Lie symmetry of a Vacco system, Acta Phys. Sin., 54, 9, 3983-3986, 2005 · Zbl 1202.70029 · doi:10.7498/aps.54.3983
[45] Vujanović, B. D.; Jones, S. E., Variational Methods in Nonconservative Phenomena, 1989, Academic Press, INC: Academic Press, INC, San Diego · Zbl 0715.70003
[46] Liang, L. F.; Liang, Z. W., On the relationship between Vacco model and Chetaev model, Acta Mech. Solida. Sin., 15, 4, 290-295, 1994 · doi:10.19636/j.cnki.cjsm42-1250/o3.1994.04.002
[47] Sarlet, W.; Cantrijn, F., Generalizations of Noether’s theorem in classical mechanics, SIAM Rev., 23, 4, 467-494, 1981 · Zbl 0474.70014 · doi:10.1137/1023098
[48] Mei, F. X., Foundations of Mechanics of Nonholonomic Systems, 1985, Beijing Institute of Technology Press
[49] Lazo, M. J.; Paiva, J.; Frederico, G. S. F., Noether theorem for action-dependent Lagrangian functions: Conservation laws for non-conservative systems, Nonlinear Dyn., 97, 1125-1136, 2019 · Zbl 1430.37069 · doi:10.1007/s11071-019-05036-z
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.