×

Topology optimization of geometrically nonlinear structures using reduced-order modeling. (English) Zbl 1536.74201

Summary: High computational costs are encountered in topology optimization problems of geometrically nonlinear structures since intensive use has to be made of incremental-iterative finite element simulations. To alleviate this computational intensity, reduced-order models (ROMs) are explored in this paper. The proposed method targets ROM bases consisting of a relatively small set of base vectors while accuracy is still guaranteed. For this, several fully automated update and maintenance techniques for the ROM basis are investigated and combined. In order to remain effective for flexible structures, path derivatives are added to the ROM basis. The corresponding sensitivity analysis (SA) strategies are presented and the accuracy and efficiency are examined. Various geometrically nonlinear examples involving both solid as well as shell elements are studied to test the proposed ROM techniques. Test cases demonstrates that the set of degrees of freedom appearing in the nonlinear equilibrium equation typically reduces to several tenth. Test cases show a reduction of up to 6 times fewer full system updates.

MSC:

74P15 Topological methods for optimization problems in solid mechanics
74K25 Shells

References:

[1] Bendsøe, M. P.; Sigmund, O., Material interpolation schemes in topology optimization. Arch. Appl. Mech., 9-10, 635-654 (1999) · Zbl 0957.74037
[2] van Dijk, N. P.; Maute, K.; Langelaar, M.; Van Keulen, F., Level-set methods for structural topology optimization: a review. Struct. Multidiscip. Optim., 3, 437-472 (2013)
[3] Xie, Y. M.; Steven, G. P., A simple evolutionary procedure for structural optimization. Comput. Struct., 5, 885-896 (1993)
[4] Querin, O.; Young, V.; Steven, G.; Xie, Y., Computational efficiency and validation of bi-directional evolutionary structural optimisation. Comput. Methods Appl. Mech. Engrg., 559-573 (2000) · Zbl 1003.74059
[5] Guo, X.; Zhang, W.; Zhong, W., Doing topology optimization explicitly and geometrically—a new moving morphable components based framework. J. Appl. Mech., 8 (2014)
[6] Polynkin, A.; Van Keulen, F.; Toropov, V., Optimization of geometrically nonlinear thin-walled structures using the multipoint approximation method. Struct. Optim., 2, 105-116 (1995)
[7] Altenbach, H.; Morachkovsky, O.; Naumenko, K.; Sychov, A., Geometrically nonlinear bending of thin-walled shells and plates under creep-damage conditions. Arch. Appl. Mech., 5, 339-352 (1997) · Zbl 0877.73039
[8] Luo, Z.; Tong, L., A level set method for shape and topology optimization of large-displacement compliant mechanisms. Internat. J. Numer. Methods Engrg., 6, 862-892 (2008) · Zbl 1195.74134
[9] Lazarov, B. S.; Schevenels, M.; Sigmund, O., Robust design of large-displacement compliant mechanisms. Mech. Sci., 2, 175-182 (2011)
[10] Bruns, T.; Sigmund, O.; Tortorelli, D. A., Numerical methods for the topology optimization of structures that exhibit snap-through. Internat. J. Numer. Methods Engrg., 10, 1215-1237 (2002) · Zbl 1027.74053
[11] Bathe, K.-J., Finite element method, 1-12, arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470050118.ecse159, URL https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470050118.ecse159
[12] van Dijk, N. P.; Langelaar, M.; van Keulen, F., Element deformation scaling for robust geometrically nonlinear analyses in topology optimization. Struct. Multidiscip. Optim., 4, 537-560 (2014)
[13] Lahuerta, R. D.; Simões, E. T.; Campello, E. M.; Pimenta, P. M.; Silva, E. C., Towards the stabilization of the low density elements in topology optimization with large deformation. Comput. Mech., 4, 779-797 (2013) · Zbl 1311.74099
[14] Bruns, T. E.; Tortorelli, D. A., An element removal and reintroduction strategy for the topology optimization of structures and compliant mechanisms. Internat. J. Numer. Methods Engrg., 10, 1413-1430 (2003) · Zbl 1062.74589
[15] Xingjun, G.; Haitao, M., Topology optimization of continuum structures under buckling constraints. Comput. Struct., 142-152 (2015)
[16] Pedersen, N., Maximization of eigenvalues using topology optimization. Struct. Multidiscip. Optim., 2-11 (2000)
[17] Zhao, J.; Chunjie, W., Geometrically nonlinear finite element behaviour using buckling mode superposition. Comput. Methods Appl. Mech. Engrg., 101-114 (2016)
[18] Nagy, D.; König, M., Geometrically nonlinear finite element behaviour using buckling mode superposition. Comput. Methods Appl. Mech. Engrg., 447-484 (1979) · Zbl 0421.73077
[19] Chan, A. S.L.; Hsiao, K. M., Nonlinear analysis using a reduced number of variables. Comput. Methods Appl. Mech. Engrg., 1, 899-913 (1985) · Zbl 0589.73077
[20] Safjan, A., Nonlinear structural analysis via reduced basis technique. Comput. Struct., 6, 1055-1061 (1988) · Zbl 0667.73060
[21] Kim, K.; Radu, A. G.; Wang, X. Q.; Mignolet, M. P., Nonlinear reduced order modeling of isotropic and functionally graded plates. Int. J. Non-Linear Mech., 100-110 (2013)
[22] Amir, O.; Bendsøe, M. P.; Sigmund, O., Approximate reanalysis in topology optimization. Internat. J. Numer. Methods Engrg., 12, 1474-1491 (2009) · Zbl 1183.74216
[23] Gogu, C., Improving the efficiency of large scale topology optimization through on-the-fly reduced order model construction. Internat. J. Numer. Methods Engrg., 4, 281-304 (2015) · Zbl 1352.74241
[24] Hooijkamp, E.; Keulen, F.v., Topology optimization for linear thermo-mechanical transient problems: Modal reduction and adjoint sensitivities. Internat. J. Numer. Methods Engrg., 8, 1230-1257 (2018) · Zbl 07874751
[25] Wang, S.; de Sturler, E.; Paulino, G., Large-scale topology optimization using preconditioned krylov subspace methods with recycling. Internat. J. Numer. Methods Engrg., 12, 2441-2468 (2007) · Zbl 1194.74265
[26] Xia, L.; Breitkopf, P., A reduced multiscale model for nonlinear structural topology optimization. Comput. Methods Appl. Mech. Engrg., 117-134 (2014) · Zbl 1423.74771
[27] Orozco, C. E.; Ghattas, O. N., A reduced SAND method for optimal design of non-linear structures. Internat. J. Numer. Methods Engrg., 15, 2759-2774 (1997) · Zbl 0895.73050
[28] Van Keulen, F.; Booij, J., Refined consistent formulation of a curved triangular finite rotation shell element. Internat. J. Numer. Methods Engrg., 16, 2803-2820 (1996) · Zbl 0873.73072
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.