×

A novel agent model of heterogeneous risk based on temporal interaction network for stock price simulation. (English) Zbl 1532.91072

Summary: We propose a novel agent-based financial price model with heterogeneous transmission risks on a time-dependent interaction network to investigate financial market dynamics, the underlying network is the combination of the SIS-type epidemic model and the temporal exponential random graph model-TERGM, in which individuals are placed as nodes and the links represent their social interactions with a temporal pattern for formations and eliminations. This mimic financial market consists of a heterogeneous population with two types of investors: senior traders with the high information dissemination ability (risk) and general traders with the low information dissemination ability (risk). At any given time, investors can have one of two distinct types of states: “active” and “passive”, the “active” traders follow their neighbors’ attitude states \(\pm 1\) regarding buying or selling an asset, and the “passive” traders naturally make a neutral decision, and the dissemination of their investment decisions along the network are characterized by node interactions in the contact process of the epidemic model. Compared with several real-world financial indices, our model exhibits fundamental qualitative and quantitative real-world market features of returns, such as volatility clustering, fat-tailed distributions, and multifractality of the original returns and the decomposed series with different frequencies. Furthermore, we find out the underlying network structure of agents like social network of traders and heterogeneous agents’ (traders’) information propagation capabilities can effect the financial market dynamics on prices.

MSC:

91B80 Applications of statistical and quantum mechanics to economics (econophysics)

Software:

MFDFA; plfit; EpiModel
Full Text: DOI

References:

[1] Schmitt, N.; Schwartz, I.; Westerhoff, F., Heterogeneous speculators and stock market dynamics: A simple agent-based computational model, Eur. J. Finance, 1-20 (2020)
[2] Lu, Y.; Wang, J.; Niu, H., Agent-based financial dynamics model from stochastic interacting epidemic system and complexity analysis, Phys. Lett. A, 379, 14-15, 1023-1031 (2015)
[3] Lu, Y.; Wang, J.; Niu, H., Nonlinear multi-analysis of agent-based financial market dynamics by epidemic system, Chaos (Woodbury, N.Y.), 25, 10, Article 103103 pp. (2015) · Zbl 1376.62067
[4] Lu, Y.; Wang, J., Nonlinear dynamical complexity of agent-based stochastic financial interacting epidemic system, Nonlinear Dynam., 86, 3, 1823-1840 (2016)
[5] Xiao, D.; Wang, J., Complexity behaviours of agent-based financial dynamics by hetero-distance contact process, Nonlinear Dynam., 100, 4, 3867-3886 (2020)
[6] Xiao, D.; Wang, J., Attitude interaction for financial price behaviours by contact system with small-world network topology, Physica A: Stat. Mech. Appl., 572, Article 125864 pp. (2021)
[7] Feng, L.; Li, B.; Podobnik, B.; Preis, T.; Stanley, H. E., Linking agent-based models and stochastic models of financial markets, Proc. Natl. Acad. Sci. USA, 109, 22, 8388-8393 (2012) · Zbl 1355.91084
[8] Zheng, Z.; Lu, Y.; Zhang, J., Multiscale complexity fluctuation behaviours of stochastic interacting cryptocurrency price model, Physica A: Stat. Mech. Appl., 593, Article 126939 pp. (2022)
[9] Zubillaga, B. J.; Vilela, A. L.; Wang, C.; Nelson, K. P.; Stanley, H. E., A three-state opinion formation model for financial markets, Physica A: Stat. Mech. Appl., 588, Article 126527 pp. (2022)
[10] Vilela, A. L.; Wang, C.; Nelson, K. P.; Stanley, H. E., Majority-vote model for financial markets, Physica A: Stat. Mech. Appl., 515, 762-770 (2019)
[11] Lu, Y.; Wang, J., Multivariate multiscale entropy of financial markets, Commun. Nonlinear Sci. Numer. Simul., 52, 77-90 (2017) · Zbl 1510.91159
[12] Babinec, P., Stochastic resonance in an interacting-agent model of stock market, Chaos Solitons Fractals, 13, 9, 1767-1770 (2002) · Zbl 1068.91026
[13] Fang, W.; Tian, S.; Wang, J., Multiscale fluctuations and complexity synchronization of bitcoin in China and US markets, Physica A: Stat. Mech. Appl., 512, 109-120 (2018)
[14] Fang, W.; Ke, J.; Wang, J.; Feng, L., Linking market interaction intensity of 3D ising type financial model with market volatility, Physica A: Stat. Mech. Appl., 461, 531-542 (2016) · Zbl 1400.91394
[15] Arthur, W. B., Foundations of complexity economics, Nat. Rev. Phys., 3, 2, 136-145 (2021)
[16] Bonabeau, E., Agent-based modeling: Methods and techniques for simulating human systems, Proc. Natl. Acad. Sci., 99, 7280-7287 (2002)
[17] Hidalgo, C. A., Economic complexity theory and applications, Nat. Rev. Phys., 3, 2, 92-113 (2021)
[18] Farmer, J. D.; Foley, D., The economy needs agent-based modelling, Nature, 460, 685-686 (2009)
[19] Arthur, W. B.; Holland, J. H.; LeBaron, B.; Palmer, R. G.; Tayler, P., Asset pricing under endogenous expectations in an artificial stock market, FEN: Behav. Finance (Topic) (1996)
[20] Li, J.; Chan, F. T., An agent-based model of supply chains with dynamic structures, Appl. Math. Model., 37, 7, 5403-5413 (2013) · Zbl 1426.90019
[21] Zhao, L.; Yang, G.; Wang, W.; Chen, Y.; Huang, J. P.; Ohashi, H.; Stanley, H. E., Herd behavior in a complex adaptive system, Proc. Natl. Acad. Sci. USA, 108, 37, 15058-15063 (2011)
[22] Granha, M. F.B.; Vilela, A. L.M.; Wang, C.; Nelson, K. P.; Stanley, H. E., Opinion dynamics in financial markets via random networks, Proc. Natl. Acad. Sci. USA, 119, 49, Article e2201573119 pp. (2022)
[23] Mantegna, R. N.; Stanley, H. E., Introduction to Econophysics: Correlations and Complexity in Finance (1999), Cambridge University Press
[24] Raafat, R. M.; Chater, N.; Frith, C., Herding in humans, Trends in Cognitive Sciences, 13, 10, 420-428 (2009)
[25] Leifeld, P.; Cranmer, S. J.; Desmarais, B. A., Temporal exponential random graph models with btergm : Estimation and bootstrap confidence intervals, J. Stat. Softw., 83, 6 (2018)
[26] Roehner, B.; Sornette, D., “Thermometers” of speculative frenzy, Eur. Phys. J. B, 16, 729-739 (2000)
[27] Sornette, D., Physics and financial economics (1776-2014): puzzles, ising and agent-based models, Rep. Prog. Phys. Phys. Soc. (Great Britain), 77, 6, Article 062001 pp. (2014)
[28] Westphal, R.; Sornette, D., Market impact and performance of arbitrageurs of financial bubbles in an agent-based model, J. Econ. Behav. Organ., 171, 1-23 (2020)
[29] Cividino, D.; Westphal, R.; Sornette, D., Multiasset financial bubbles in an agent-based model with noise traders’ herding described by an n -vector ising model, Phys. Rev. Res., 5, 1 (2023)
[30] Liu, C.; Yang, Y.; Chen, B.; Cui, T.; Shang, F.; Fan, J.; Li, R., Revealing spatiotemporal interaction patterns behind complex cities, Chaos, 32, 8 (2022), 081105
[31] Jenness, S. M.; Goodreau, S. M.; Morris, M., EpiModel: An r package for mathematical modeling of infectious disease over networks, J. Stat. Softw., 84 (2018)
[32] Kiss, I. Z.; Miller, J. C.; Simon, P. L., Mathematics of Epidemics on Networks, Vol. 46 (2017), Springer International Publishing: Springer International Publishing Cham · Zbl 1373.92001
[33] Ivković, Z.; Weisbenner, S., Information diffusion effects in individual investors’ common stock purchases: Covet thy neighbors’ investment choices, Rev. Financ. Stud., 20, 4, 1327-1357 (2007)
[34] Hong, H.; Kubik, J. D.; Stein, J. C., Social interaction and stock-market participation, J. Finance, 59, 1, 137-163 (2004)
[35] Ozsoylev, H. N.; Walden, J.; Yavuz, M. D.; Bildik, R., Investor networks in the stock market, Rev. Financ. Stud., 27, 5, 1323-1366 (2013)
[36] Rossi, A. G.; Blake, D.; Timmermann, A.; Tonks, I.; Wermers, R., Network centrality and delegated investment performance, J. Financ. Econ., 128, 1, 183-206 (2018)
[37] Shiller, R. J.; Pound, J., Survey evidence on diffusion of interest and information among investors, J. Econ. Behav. Organ., 12, 1, 47-66 (1989)
[38] Zhao, Z.; Zhang, X., A continuous heterogeneous-agent model for the co-evolution of asset price and wealth distribution in financial market, Chaos Solitons Fractals, 155, Article 111543 pp. (2022) · Zbl 1498.91426
[39] Kaizoji, T.; Leiss, M.; Saichev, A.; Sornette, D., Super-exponential endogenous bubbles in an equilibrium model of fundamentalist and chartist traders, J. Econ. Behav. Organ., 112, 289-310 (2015)
[40] Cohen, L.; Frazzini, A.; Malloy, C., The small world of investing: Board connections and mutual fund returns, J. Polit. Econ., 116, 5, 951-979 (2008)
[41] Shang, F.; Chen, B.; Expert, P.; Lü, L.; Yang, A.; Stanley, H. E.; Lambiotte, R.; Evans, T. S.; Li, R., Local dominance unveils clusters in networks (2022)
[42] Kim, S.; Abdulali, A.; Lee, S., Heterogeneity is a key factor describing the initial outbreak of COVID-19, Appl. Math. Model., 117, 714-725 (2023) · Zbl 1510.92212
[43] Clauset, A.; Shalizi, C. R.; Newman, M. E.J., Power-law distributions in empirical data, SIAM Rev., 51, 4, 661-703 (2009) · Zbl 1176.62001
[44] Virkar, Y.; Clauset, A., Power-law distributions in binned empirical data, Ann. Appl. Stat., 8, 1 (2014) · Zbl 1454.62150
[45] Luo, C.; Liu, L.; Da Wang, M. E.J., Multiscale financial risk contagion between international stock markets: Evidence from EMD-Copula-CoVaR analysis, North Am. J. Econ. Finance, 58, Article 101512 pp. (2021)
[46] Rydin Gorjão, L.; Hassan, G.; Kurths, J.; Witthaut, D., MFDFA: Efficient multifractal detrended fluctuation analysis in python, Comput. Phys. Comm., 273, Article 108254 pp. (2022) · Zbl 07699235
[47] Jiang, Z.-Q.; Xie, W.-J.; Zhou, W.-X.; Sornette, D., Multifractal analysis of financial markets: A review, Rep. Prog. Phys. Phys. Soc. (Great Britain), 82, 12, Article 125901 pp. (2019)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.