×

Provably convergent learned inexact descent algorithm for low-dose CT reconstruction. (English) Zbl 07915984

Summary: We propose an Efficient Inexact Learned Descent-type Algorithm (ELDA) for a class of nonconvex and nonsmooth variational models, where the regularization consists of a sparsity enhancing term and non-local smoothing term for learned features. The ELDA improves the performance of the LDA in Chen et al. (SIAM J Imag Sci 14(4), 1532–1564, 2021) by reducing the number of the subproblems from two to one for most of the iterations and allowing inexact gradient computation. We generate a deep neural network, whose architecture follows the algorithm exactly for low-dose CT (LDCT) reconstruction. The network inherits the convergence behavior of the algorithm and is interpretable as a solution of the varational model and parameter efficient. The experimental results from the ablation study and comparisons with several state-of-the-art deep learning approaches indicate the promising performance of the proposed method in solution accuracy and parameter efficiency.

MSC:

90C26 Nonconvex programming, global optimization
65K05 Numerical mathematical programming methods
65K10 Numerical optimization and variational techniques
68U10 Computing methodologies for image processing

Software:

PyTorch

References:

[1] Adler, J.; Öktem, O., Learned primal-dual reconstruction, IEEE Trans. Med. Imaging, 37, 6, 1322-1332, 2018 · doi:10.1109/TMI.2018.2799231
[2] Belkin, M.; Niyogi, P., Laplacian eigenmaps for dimensionality reduction and data representation, Neural Comput., 15, 6, 1373-1396, 2003 · Zbl 1085.68119 · doi:10.1162/089976603321780317
[3] Bian, W.: Optimization-based deep learning methods for magnetic resonance imaging reconstruction and synthesis (2023)
[4] Bian, W.; Chen, Y.; Ye, X., An optimal control framework for joint-channel parallel mri reconstruction without coil sensitivities, Magn. Reson. Imaging, 89, 1-11, 2022 · doi:10.1016/j.mri.2022.01.011
[5] Bian, W., Chen, Y., Ye, X.: Deep Parallel MRI Reconstruction Network Without Coil Sensitivities, pp. 17-26 (MLMIR@MICCAI 2020). doi:10.1007/978-3-030-61598-7_2
[6] Bian, W.; Chen, Y.; Ye, X.; Zhang, Q., An optimization-based meta-learning model for mri reconstruction with diverse dataset, J. Imaging, 7, 11, 231, 2021 · doi:10.3390/jimaging7110231
[7] Bian, W., Jang, A., Liu, F.: Diffusion modeling with domain-conditioned prior guidance for accelerated mri and qmri reconstruction (2023)
[8] Bian, W., Jang, A., Liu, F.: Multi-task magnetic resonance imaging reconstruction using meta-learning (2024)
[9] Bian, W.; Zhang, Q.; Ye, X.; Chen, Y.; Wang, L.; Dou, Q.; Fletcher, PT; Speidel, S.; Li, S., A learnable variational model for joint multimodal mri reconstruction and synthesis, Medical Image Computing and Computer Assisted Intervention - MICCAI 2022, 354-364, 2022, Cham: Springer, Cham · doi:10.1007/978-3-031-16446-0_34
[10] Brenner, DJ; Elliston, CD; Hall, EJ; Berdon, WE, Estimated risks of radiation-induced fatal cancer from pediatric ct, Am. J. Roentgenol., 176, 2, 289-296, 2001 · doi:10.2214/ajr.176.2.1760289
[11] Brody, AS; Frush, DP; Huda, W.; Brent, RL, Radiation risk to children from computed tomography, Pediatrics, 120, 3, 677-682, 2007 · doi:10.1542/peds.2007-1910
[12] Chen, H., Huang, W., Ni, Y., Yun, S., Wen, F., Latapie, H., Imani, M.: Taskclip: Extend large vision-language model for task oriented object detection (2024)
[13] Chen, H., Low-dose ct via convolutional neural network, Biomed. Opt. Express, 8, 2, 679-694, 2017 · doi:10.1364/BOE.8.000679
[14] Chen, H., Low-dose ct with a residual encoder-decoder convolutional neural network, IEEE Trans. Med. Imaging, 36, 12, 2524-2535, 2017 · doi:10.1109/TMI.2017.2715284
[15] Chen, H., Learn: Learned experts’ assessment-based reconstruction network for sparse-data ct, IEEE Trans. Med. Imaging, 37, 6, 1333-1347, 2018 · doi:10.1109/TMI.2018.2805692
[16] Chen, Y.; Liu, H.; Ye, X.; Zhang, Q., Learnable descent algorithm for nonsmooth nonconvex image reconstruction, SIAM J. Imag. Sci., 14, 4, 1532-1564, 2021 · Zbl 1474.90353 · doi:10.1137/20M1353368
[17] Chen, Y.; Ye, X.; Zhang, Q., Variational Model-Based Deep Neural Networks for Image Reconstruction, 1-29, 2021, Cham: Springer, Cham · doi:10.1007/978-3-030-03009-4_57-1
[18] Chun, IY; Fessler, JA, Convolutional dictionary learning: acceleration and convergence, IEEE Trans. Image Process., 27, 4, 1697-1712, 2017 · Zbl 1409.94090 · doi:10.1109/TIP.2017.2761545
[19] Chun, IY; Fessler, JA, Convolutional analysis operator learning: acceleration and convergence, IEEE Trans. Image Process., 29, 1, 2108-2122, 2019 · Zbl 07586015
[20] Chun, IY; Huang, Z.; Lim, H.; Fessler, J., Momentum-net: fast and convergent iterative neural network for inverse problems, IEEE Trans. Pattern Anal. Mach. Intell., 2020 · doi:10.1109/tpami.2020.3012955
[21] Chun, I.Y., Zheng, X., Long, Y., Fessler, J.A.: Bcd-net for low-dose ct reconstruction: Acceleration, convergence, and generalization. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 31-40. Springer (2019)
[22] Clarke, FH, Optimization and Nonsmooth Analysis, 1990, Philadelphia: SIAM, Philadelphia · Zbl 0696.49002 · doi:10.1137/1.9781611971309
[23] Cormack, AM, Representation of a function by its line integrals, with some radiological applications. ii, J. Appl. Phys., 35, 10, 2908-2913, 1964 · Zbl 0122.18401 · doi:10.1063/1.1713127
[24] De Man, B., Basu, S.: Distance-driven projection and backprojection. In: 2002 IEEE Nuclear Science Symposium Conference Record, vol. 3, pp. 1477-1480. IEEE (2002)
[25] De Man, B.; Basu, S., Distance-driven projection and backprojection in three dimensions, Phys. Med. Biol., 49, 11, 2463, 2004 · doi:10.1088/0031-9155/49/11/024
[26] Ding, C.; Zhang, Q.; Wang, G.; Ye, X.; Chen, Y.; Greenspan, H.; Madabhushi, A.; Mousavi, P.; Salcudean, S.; Duncan, J.; Syeda-Mahmood, T.; Taylor, R., Learned alternating minimization algorithm for dual-domain sparse-view ct reconstruction, Medical Image Computing and Computer Assisted Intervention - MICCAI 2023, 173-183, 2023, Cham: Springer, Cham · doi:10.1007/978-3-031-43999-5_17
[27] Dong, X.; Wong, R.; Lyu, W.; Abell-Hart, K.; Deng, J.; Liu, Y.; Hajagos, JG; Rosenthal, RN; Chen, C.; Wang, F., An integrated lstm-heterorgnn model for interpretable opioid overdose risk prediction, Artif. Intell. Med., 135, 2023 · doi:10.1016/j.artmed.2022.102439
[28] Dumoulin, V., Visin, F.: A guide to convolution arithmetic for deep learning. arXiv preprint arXiv:1603.07285 (2016)
[29] Geyer, LL, State of the art: iterative ct reconstruction techniques, Radiology, 276, 2, 339-357, 2015 · doi:10.1148/radiol.2015132766
[30] Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: In Proceedings of the International Conference on Artificial Intelligence and Statistics. Society for Artificial Intelligence and Statistics (2010)
[31] Han, Y.; Ye, JC, Framing u-net via deep convolutional framelets: application to sparse-view ct, IEEE Trans. Med. Imaging, 37, 6, 1418-1429, 2018 · doi:10.1109/TMI.2018.2823768
[32] den Harder, AM, Radiation dose reduction in pediatric great vessel stent computed tomography using iterative reconstruction: a phantom study, PLoS ONE, 12, 4, 2017 · doi:10.1371/journal.pone.0175714
[33] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770-778 (2016). doi:10.1109/CVPR.2016.90
[34] He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: European Conference on Computer Vision, pp. 630-645. Springer (2016)
[35] He, W., Jiang, Z., Zhang, C., Sainju, A.M.: Curvanet: Geometric deep learning based on directional curvature for 3d shape analysis. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2214-2224 (2020)
[36] He, W., Sainju, A.M., Jiang, Z., Yan, D.: Deep neural network for 3d surface segmentation based on contour tree hierarchy. In: Proceedings of the 2021 SIAM International Conference on Data Mining (SDM), pp. 253-261. SIAM (2021)
[37] He, W.; Sainju, AM; Jiang, Z.; Yan, D.; Zhou, Y., Earth imagery segmentation on terrain surface with limited training labels: a semi-supervised approach based on physics-guided graph co-training, ACM Trans. Intell. Syst. Technol., 13, 2, 1-22, 2022
[38] Hounsfield, GN, Computerized transverse axial scanning (tomography): Part 1: description of system, Br. J. Radiol., 46, 552, 1016-1022, 1973 · doi:10.1259/0007-1285-46-552-1016
[39] Hsieh, CJ; Jin, SC; Chen, JC; Kuo, CW; Wang, RT; Chu, WC, Performance of sparse-view ct reconstruction with multi-directional gradient operators, PLoS ONE, 14, 1, 2019 · doi:10.1371/journal.pone.0209674
[40] Hu, D., Hybrid-domain neural network processing for sparse-view ct reconstruction, IEEE Trans. Radiat. Plasma Med. Sci., 5, 1, 88-98, 2021 · doi:10.1109/TRPMS.2020.3011413
[41] Huang, X.; Zhang, Z.; Guo, F.; Wang, X.; Chi, K.; Wu, K.; Gao, Q.; Zhou, J., Research on older adults’ interaction with e-health interface based on explainable artificial intelligence, Human Aspects of IT for the Aged Population, 38-52, 2024, Cham: Springer, Cham · doi:10.1007/978-3-031-61546-7_3
[42] Jiang, Z.; He, W.; Kirby, MS; Sainju, AM; Wang, S.; Stanislawski, LV; Shavers, EJ; Usery, EL, Weakly supervised spatial deep learning for earth image segmentation based on imperfect polyline labels, ACM Trans. Intell. Syst. Technol., 13, 2, 1-20, 2022 · doi:10.1145/3472300
[43] Jin, KH; McCann, MT; Froustey, E.; Unser, M., Deep convolutional neural network for inverse problems in imaging, IEEE Trans. Image Process., 26, 9, 4509-4522, 2017 · Zbl 1409.94275 · doi:10.1109/TIP.2017.2713099
[44] Wang, Jing; Li, Tianfang; Hongbing, Lu; Liang, Zhengrong, Penalized weighted least-squares approach to sinogram noise reduction and image reconstruction for low-dose x-ray computed tomography, IEEE Trans. Med. Imaging, 25, 10, 1272-1283, 2006 · doi:10.1109/TMI.2006.882141
[45] Kak, AC; Slaney, M.; Wang, G., Principles of computerized tomographic imaging, Med. Phys., 29, 1, 107, 2002 · doi:10.1118/1.1455742
[46] Kang, E.; Chang, W.; Yoo, J.; Ye, JC, Deep convolutional framelet denosing for low-dose ct via wavelet residual network, IEEE Trans. Med. Imaging, 37, 6, 1358-1369, 2018 · doi:10.1109/TMI.2018.2823756
[47] Kang, E.; Min, J.; Ye, JC, A deep convolutional neural network using directional wavelets for low-dose x-ray ct reconstruction, Med. Phys., 44, 10, e360-e375, 2017 · doi:10.1002/mp.12344
[48] Keller, EJ, Reinforcing the importance and feasibility of implementing a low-dose protocol for ct-guided biopsies, Acad. Radiol., 25, 9, 1146-1151, 2018 · doi:10.1016/j.acra.2018.01.003
[49] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: International Conference on Learning Representations (ICLR) (2017)
[50] Lai, Z.; Chauhan, J.; Chen, D.; Dugger, BN; Cheung, SC; Chuah, CN, Semi-path: an interactive semi-supervised learning framework for gigapixel pathology image analysis, Smart Health, 32, 2024 · doi:10.1016/j.smhl.2024.100474
[51] Lai, Z., Guo, R., Xu, W., Hu, Z., Mifflin, K., Dugger, B.N., Chuah, C.N., Cheung, S.c.: Automated grey and white matter segmentation in digitized aβ human brain tissue slide images. In: 2020 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), pp. 1-6 (2020). doi:10.1109/ICMEW46912.2020.9105974
[52] Lai, Z., Vadlaputi, P., Tancredi, D.J., Garg, M., Koppel, R.I., Goodman, M., Hogan, W., Cresalia, N., Juergensen, S., Manalo, E., Lakshminrusimha, S., Chuah, C.N., Siefkes, H.: Enhanced critical congenital cardiac disease screening by combining interpretable machine learning algorithms. In: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 1403-1406 (2021). doi:10.1109/EMBC46164.2021.9630111
[53] Lai, Z., Wang, C., Hu, Z., Dugger, B.N., Cheung, S.C., Chuah, C.N.: A semi-supervised learning for segmentation of gigapixel histopathology images from brain tissues. In: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 1920-1923 (2021). doi:10.1109/EMBC46164.2021.9629715
[54] Lai, Z., Wang, C., Oliveira, L.C., Dugger, B.N., Cheung, S.C., Chuah, C.N.: Joint semi-supervised and active learning for segmentation of gigapixel pathology images with cost-effective labeling. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops, pp. 591-600 (2021)
[55] Le, H., Borji, A.: What are the receptive, effective receptive, and projective fields of neurons in convolutional neural networks? CoRR arXiv:1705.07049 (2017)
[56] Lee, H., Lee, J., Cho, S.: View-interpolation of sparsely sampled sinogram using convolutional neural network. In: Medical Imaging 2017: Image Processing, vol. 10133, p. 1013328. International Society for Optics and Photonics (2017)
[57] Lee, H.; Lee, J.; Kim, H.; Cho, B.; Cho, S., Deep-neural-network-based sinogram synthesis for sparse-view ct image reconstruction, IEEE Trans. Radiat. Plasma Med. Sci., 3, 2, 109-119, 2018 · doi:10.1109/TRPMS.2018.2867611
[58] Li, M.; Ling, P.; Wen, S.; Chen, X.; Wen, F., Bubble-wave-mitigation algorithm and transformer-based neural network demodulator for water-air optical camera communications, IEEE Photonics J., 15, 5, 1-10, 2023 · doi:10.1109/JPHOT.2023.3317948
[59] Li, T.; Lu, H.; Liang, Z., Penalized weighted least-squares approach to sinogram noise reduction and image reconstruction for low-dose x-ray computed tomography, IEEE Trans. Med. Imaging, 25, 1272-83, 2006 · doi:10.1109/TMI.2006.882141
[60] Liang, K., Yang, H., Kang, K., Xing, Y.: Improve angular resolution for sparse-view ct with residual convolutional neural network. In: Medical Imaging 2018: Physics of Medical Imaging, vol. 10573, p. 105731K. International Society for Optics and Photonics (2018)
[61] Liao, D., Liu, C., Christensen, B.W., Tong, A., Huguet, G., Wolf, G., Nickel, M., Adelstein, I., Krishnaswamy, S.: Assessing neural network representations during training using noise-resilient diffusion spectral entropy. In: 2024 58th Annual Conference on Information Sciences and Systems (CISS), pp. 1-6 (2024). doi:10.1109/CISS59072.2024.10480166
[62] Liu, C.: Fourier transform approximation as an auxiliary task for image classification (2021)
[63] Liu, C.; Zhu, N.; Sun, H.; Zhang, J.; Feng, X.; Gjerswold-Selleck, S.; Sikka, D.; Zhu, X.; Liu, X.; Nuriel, T.; Wei, HJ; Wu, CC; Vaughan, JT; Laine, AF; Provenzano, FA; Small, SA; Guo, J., Deep learning of mri contrast enhancement for mapping cerebral blood volume from single-modal non-contrast scans of aging and Alzheimer’s disease brains, Fron. Aging Neurosci., 14, 673, 2022 · doi:10.3389/fnagi.2022.923673
[64] Liu, S., Wu, K., Jiang, C., Huang, B., Ma, D.: Financial time-series forecasting: Towards synergizing performance and interpretability within a hybrid machine learning approach (2023). arXiv:2401.00534
[65] Lu, H., li, T., Liang, Z.: Sinogram noise reduction for low-dose ct by statistics-based nonlinear filters. Proceedings of SPIE - The International Society for Optical Engineering 5747 (2005). doi:10.1117/12.595662
[66] Lyu W Dong X, W.R.Z.S.A.H.K.W.F.C.C.: A multimodal transformer: Fusing clinical notes with structured ehr data for interpretable in-hospital mortality prediction. AMIA Annu Symp Proc pp. 719-728 (2023)
[67] Ma, H.; Liu, Y.; Wu, G., Elucidating multi-stage progression of neuro-degeneration process in Alzheimer’s disease, Alzheimer’s Dementia, 18, 2022 · doi:10.1002/alz.068774
[68] Ma, H., Shi, Z., Kim, M., Liu, B., Smith, P.J., Liu, Y., Wu, G., (ADNI, A.D.N.I., et al.: Disentangling sex-dependent effects of apoe on diverse trajectories of cognitive decline in Alzheimer’s disease. NeuroImage 120609 (2024)
[69] Ma, H.; Zeng, D.; Liu, Y., Learning individualized treatment rules with many treatments: a supervised clustering approach using adaptive fusion, Adv. Neural. Inf. Process. Syst., 35, 15956-15969, 2022
[70] Ma, H.; Zeng, D.; Liu, Y., Learning optimal group-structured individualized treatment rules with many treatments, J. Mach. Learn. Res., 24, 102, 1-48, 2023
[71] Manduca, A., Projection space denoising with bilateral filtering and ct noise modeling for dose reduction in ct, Med. Phys., 36, 11, 4911-4919, 2009 · doi:10.1118/1.3232004
[72] McCollough, C., Tu-fg-207a-04: overview of the low dose ct grand challenge, Med. Phys., 43, 3759-3760, 2016 · doi:10.1118/1.4957556
[73] Nesterov, Y., Smooth minimization of non-smooth functions, Math. Program., 103, 1, 127-152, 2005 · Zbl 1079.90102 · doi:10.1007/s10107-004-0552-5
[74] Niu, S., Sparse-view x-ray ct reconstruction via total generalized variation regularization, Phys. Med. Biol., 59, 12, 2997, 2014 · doi:10.1088/0031-9155/59/12/2997
[75] Pang, N., Qian, L., Lyu, W., Yang, J.D.: Transfer learning for scientific data chain extraction in small chemical corpus with bert-crf model (2019)
[76] Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems 32, pp. 8024-8035. Curran Associates, Inc. (2019)
[77] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention, pp. 234-241. Springer (2015)
[78] Saltybaeva, N.; Martini, K.; Frauenfelder, T.; Alkadhi, H., Organ dose and attributable cancer risk in lung cancer screening with low-dose computed tomography, PLoS ONE, 11, 5, 2016 · doi:10.1371/journal.pone.0155722
[79] Sauter, A., Ultra low dose ct pulmonary angiography with iterative reconstruction, PLoS ONE, 11, 9, 2016 · doi:10.1371/journal.pone.0162716
[80] Shan, H., Competitive performance of a modularized deep neural network compared to commercial algorithms for low-dose ct image reconstruction, Nat. Mach. Intell., 1, 6, 269-276, 2019 · doi:10.1038/s42256-019-0057-9
[81] Sun, J.; Deep, A.; Zhou, S.; Veeramani, D., Industrial system working condition identification using operation-adjusted hidden Markov model, J. Intell. Manuf., 34, 6, 2611-2624, 2023 · doi:10.1007/s10845-022-01942-z
[82] Sun, J., Li, H., Xu, Z., et al.: Deep admm-net for compressive sensing mri. In: Advances in neural information processing systems, pp. 10-18 (2016)
[83] Sun, J.; Zhou, S.; Veeramani, D., A neural network-based control chart for monitoring and interpreting autocorrelated multivariate processes using layer-wise relevance propagation, Qual. Eng., 35, 1, 33-47, 2023 · doi:10.1080/08982112.2022.2087041
[84] Sun, J., Zhou, S., Veeramani, D., Liu, K.: Prediction of condition monitoring signals using scalable pairwise gaussian processes and Bayesian model averaging. IEEE Trans. Autom. Sci. Eng. (2024)
[85] Sun, S., Ren, W., Li, J., Wang, R., Cao, X.: Logit standardization in knowledge distillation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 15731-15740 (2024)
[86] Sun, S.; Ren, W.; Wang, T.; Cao, X.; Koyejo, S.; Mohamed, S.; Agarwal, A.; Belgrave, D.; Cho, K.; Oh, A., Rethinking image restoration for object detection, Advances in Neural Information Processing Systems, 4461-4474, 2022, New York: Curran Associates Inc, New York
[87] Tian, H.; Jiang, X.; Tao, P., PASSer: prediction of allosteric sites server, Mach. Learn. Sci. Technol., 2, 3, 2021 · doi:10.1088/2632-2153/abe6d6
[88] Tipnis, S., et al.: Iterative reconstruction in image space (iris) and lesion detection in abdominal ct. In: Medical Imaging 2010: Physics of Medical Imaging, vol. 7622, p. 76222K. International Society for Optics and Photonics (2010)
[89] Wang, Z., Li, T., Zheng, J.Q., Huang, B.: When cnn meet with;vit: Towards semi-supervised learning for;multi-class medical image semantic segmentation. In: Computer Vision - ECCV 2022 Workshops: Tel Aviv, Israel, October 23-27, 2022, Proceedings, Part VII, p. 424-441. Springer-Verlag, Berlin, Heidelberg (2023). doi:10.1007/978-3-031-25082-8_28
[90] Wang, Z., Ma, C.: Dual-contrastive dual-consistency dual-transformer: A semi-supervised approach to medical image segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 870-879 (2023)
[91] Wang, Z., Su, M., Zheng, J.Q., Liu, Y.: Densely connected swin-unet for multiscale information aggregation in medical image segmentation. In: 2023 IEEE International Conference on Image Processing (ICIP), pp. 940-944 (2023).doi:10.1109/ICIP49359.2023.10222451
[92] Wang, Z.; Yang, C., Mixsegnet: Fusing multiple mixed-supervisory signals with multiple views of networks for mixed-supervised medical image segmentation, Eng. Appl. Artif. Intell., 133, 2024 · doi:10.1016/j.engappai.2024.108059
[93] Wang, Z., Zhao, W., Ni, Z., Zheng, Y.: Adversarial vision transformer for medical image semantic segmentation with limited annotations. In: BMVC, p. 1002 (2022)
[94] Wei, Y.; Gao, M.; Xiao, J.; Liu, C.; Tian, Y.; He, Y., Research and implementation of cancer gene data classification based on deep learning, J. Softw. Eng. Appl., 16, 6, 155-169, 2023 · doi:10.4236/jsea.2023.166009
[95] Wei, Y.; Gao, M.; Xiao, J.; Liu, C.; Tian, Y.; He, Y., Research and implementation of traffic sign recognition algorithm model based on machine learning, J. Softw. Eng. Appl., 16, 6, 193-210, 2023 · doi:10.4236/jsea.2023.166011
[96] Wei, Y.; Zhang, D.; Gao, M.; Mulati, A.; Zheng, C.; Huang, B., Skin cancer detection based on machine learning, J. Knowl. Learn. Sci. Technol., 3, 2, 72-86, 2024 · doi:10.60087/jklst.vol3.n2.p86
[97] Wei, Y.; Zhang, D.; Gao, M.; Tian, Y.; He, Y.; Huang, B.; Zheng, C., Breast cancer prediction based on machine learning, J. Softw. Eng. Appl., 16, 8, 348-360, 2023 · doi:10.4236/jsea.2023.168018
[98] Willemink, MJ, Iterative reconstruction techniques for computed tomography part 2: initial results in dose reduction and image quality, Eur. Radiol., 23, 6, 1632-1642, 2013 · doi:10.1007/s00330-012-2764-z
[99] Wu, D.; Kim, K.; El Fakhri, G.; Li, Q., Iterative low-dose ct reconstruction with priors trained by artificial neural network, IEEE Trans. Med. Imaging, 36, 12, 2479-2486, 2017 · doi:10.1109/TMI.2017.2753138
[100] Wu, K., Creating panoramic images using orb feature detection and ransac-based image alignment*, Adv. Comput. Commun., 4, 4, 220-224, 2023 · doi:10.26855/acc.2023.08.002
[101] Wu, K.; Chen, J., Cargo operations of express air, Eng. Adv., 3, 4, 337-341, 2023 · doi:10.26855/ea.2023.08.012
[102] Wu, K.; Chi, K., Enhanced e-commerce customer engagement: a comprehensive three-tiered recommendation system, J. Knowl. Learn. Sci. Technol., 2, 3, 348-359, 2024 · doi:10.60087/jklst.vol2.n2.p359
[103] Xia, W., Lu, Z., Huang, Y., Shi, Z., Liu, Y., Chen, H., Chen, Y., Zhou, J., Zhang, Y.: Magic: Manifold and graph integrative convolutional network for low-dose ct reconstruction. IEEE Trans. Med. Imaging (2021)
[104] Xie, S.; Yang, T., Artifact removal in sparse-angle ct based on feature fusion residual network, IEEE Trans. Radiat. Plasma Med. Sci., 5, 2, 261-271, 2021 · doi:10.1109/TRPMS.2020.3000789
[105] Xu, Z., Xiao, T., He, W., Wang, Y., Jiang, Z.: Spatial knowledge-infused hierarchical learning: An application in flood mapping on earth imagery. In: Proceedings of the 31st ACM International Conference on Advances in Geographic Information Systems, pp. 1-10 (2023)
[106] Xu, Z., Xiao, T., He, W., Wang, Y., Jiang, Z., Chen, S., Xie, Y., Jia, X., Yan, D., Zhou, Y.: Spatial-logic-aware weakly supervised learning for flood mapping on earth imagery. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 38, pp. 22457-22465 (2024)
[107] Yang, Q., Low-dose ct image denoising using a generative adversarial network with Wasserstein distance and perceptual loss, IEEE Trans. Med. Imaging, 37, 6, 1348-1357, 2018 · doi:10.1109/TMI.2018.2827462
[108] Ye, S., Long, Y., Chun, I.Y.: Momentum-net for low-dose ct image reconstruction. arXiv preprint arXiv:2002.12018 (2020)
[109] Ye, S.; Ravishankar, S.; Long, Y.; Fessler, JA, Spultra: Low-dose ct image reconstruction with joint statistical and learned image models, IEEE Trans. Med. Imaging, 39, 3, 729-741, 2019 · doi:10.1109/TMI.2019.2934933
[110] Zhang, D.; Zhou, F., Self-supervised image denoising for real-world images with context-aware transformer, IEEE Access, 11, 14340-14349, 2023 · doi:10.1109/ACCESS.2023.3243829
[111] Zhang, D., Zhou, F., Jiang, Y., Fu, Z.: Mm-bsn: Self-supervised image denoising for real-world with multi-mask based on blind-spot network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4188-4197 (2023)
[112] Zhang, D., Zhou, F., Wei, Y., Yang, X., Gu, Y.: Unleashing the power of self-supervised image denoising: A comprehensive review. arXiv preprint arXiv:2308.00247 (2023)
[113] Zhang, Q.: Learnable Nonconvex Nonsmooth Optimization Algorithms and Theories for Variational Neural Networks in Solving Inverse Problems. University of Florida (2022). https://books.google.com.mx/books?id=M-LdzwEACAAJ
[114] Zhang, Q.; Heldermon, CD; Toler-Franklin, C.; Bebis, G.; Yin, Z.; Kim, E.; Bender, J.; Subr, K.; Kwon, BC; Zhao, J.; Kalkofen, D.; Baciu, G., Multiscale detection of cancerous tissue in high resolution slide scans, Advances in Visual Computing, 139-153, 2020, Cham: Springer, Cham · doi:10.1007/978-3-030-64559-5_11
[115] Zhang, Q., Ye, X., Chen, Y.: Nonsmooth nonconvex LDCT image reconstruction via learned descent algorithm. In: B. Müller, G. Wang (eds.) Developments in X-Ray Tomography XIII, vol. 11840, p. 1184013. International Society for Optics and Photonics, SPIE (2021). doi:10.1117/12.2597798
[116] Zhang, Q.; Ye, X.; Chen, Y., Extra proximal-gradient network with learned regularization for image compressive sensing reconstruction, J. Imaging, 8, 7, 178, 2022 · doi:10.3390/jimaging8070178
[117] Zhang, Z.; Liang, X.; Dong, X.; Xie, Y.; Cao, G., A sparse-view ct reconstruction method based on combination of densenet and deconvolution, IEEE Trans. Med. Imaging, 37, 6, 1407-1417, 2018 · doi:10.1109/TMI.2018.2823338
[118] Zheng, S., Zhang, Y., Lyu, W., Goswami, M., Schneider, A., Nevmyvaka, Y., Ling, H., Chen, C.: On the existence of a trojaned twin model (2023). https://openreview.net/forum?id=w48XN5HwpV8
[119] Zheng, X.; Ravishankar, S.; Long, Y.; Fessler, JA, Pwls-ultra: an efficient clustering and learning-based approach for low-dose 3d ct image reconstruction, IEEE Trans. Med. Imaging, 37, 6, 1498-1510, 2018 · doi:10.1109/TMI.2018.2832007
[120] Zhou, C., Zhao, Y., Cao, J., Shen, Y., Cui, X., Cheng, C.: Optimizing search advertising strategies: Integrating reinforcement learning with generalized second-price auctions for enhanced ad ranking and bidding (2024)
[121] Zhou, F., Fu, Z., Zhang, D.: High dynamic range imaging with context-aware transformer. In: 2023 International Joint Conference on Neural Networks (IJCNN), pp. 1-8. IEEE (2023)
[122] Zhu, N., Liu, C., Feng, X., Sikka, D., Gjerswold-Selleck, S., Small, S.A., Guo, J.: Deep learning identifies neuroimaging signatures of alzheimer’s disease using structural and synthesized functional mri data. In: 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), pp. 216-220 (2021). doi:10.1109/ISBI48211.2021.9433808
[123] Zhu, N., Liu, C., Forsyth, B., Singer, Z.S., Laine, A.F., Danino, T., Guo, J.: Segmentation with residual attention u-net and an edge-enhancement approach preserves cell shape features. In: 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 2115-2118 (2022). doi:10.1109/EMBC48229.2022.9871026
[124] Zhu, N.; Liu, C.; Laine, AF; Guo, J., Understanding and modeling climate impacts on photosynthetic dynamics with fluxnet data and neural networks, Energies, 13, 6, 1322, 2020 · doi:10.3390/en13061322
[125] Zhuang, J., Al Hasan, M.: Non-exhaustive learning using gaussian mixture generative adversarial networks. In: Machine Learning and Knowledge Discovery in Databases. Research Track: European Conference, ECML PKDD 2021, Bilbao, Spain, September 13-17, 2021, Proceedings, Part II 21, pp. 3-18. Springer (2021)
[126] Zhuang, J., Gao, M., Hasan, M.A.: Lighter u-net for segmenting white matter hyperintensities in mr images. Proceedings of the 16th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services (2019)
[127] Zhuang, J., Hasan, M.A.: Robust node representation learning via graph variational diffusion networks. arXiv preprint arXiv:2312.10903 (2023)
[128] Zhuang, J., Kennington, C.: Understanding survey paper taxonomy about large language models via graph representation learning. arXiv preprint arXiv:2402.10409 (2024)
[129] Zhuang, J., Wang, D.: Geometrically matched multi-source microscopic image synthesis using bidirectional adversarial networks. In: Proceedings of 2021 International Conference on Medical Imaging and Computer-Aided Diagnosis (MICAD 2021) Medical Imaging and Computer-Aided Diagnosis, pp. 79-88. Springer (2022)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.