×

Design and test of the actuation circuit of the inertial sensor for space gravitational wave detection based on hardware-in-the-loop simulation. (English) Zbl 1522.83101

Summary: The key scientific performance of the inertial sensor used for space gravitational wave detection is the residual acceleration noise of the test mass (TM), which is caused by the noise of inertial sensor components and external environmental noise. As the actuator of the inertial sensor, the performance of the actuator circuit affects the residual acceleration noise, but it is difficult to test the residual acceleration noise with a single actuation circuit. In this study, the actuator circuit is designed and a low-cost hardware-in-the-loop simulation system combined actuation circuit and other parts of the inertial sensor are established to test the residual acceleration noise. The system is composed of simulator electronics and software simulator, which establishes the connection between the actuation circuit with the Simulink model. The displacement sensing, probe, and drag-free model were built in Simulink to form a closed loop with the actuation circuit through the serial port. The simulation and test results show that the hardware-in-the-loop simulation system can preliminarily test the residual acceleration of TM, and the residual acceleration introduced by the actuation circuit is \(2.5 \times 10^{-13}\,\mathrm{ms}^{-2}\mathrm{Hz}^{-1/2}\). Compared with the conventional test method, the system has the advantages of low cost, simple implementation, and easy extension to test any single inertial sensor module.

MSC:

83C56 Dark matter and dark energy
60G35 Signal detection and filtering (aspects of stochastic processes)
35B42 Inertial manifolds
81Q93 Quantum control
83B05 Observational and experimental questions in relativity and gravitational theory
83-10 Mathematical modeling or simulation for problems pertaining to relativity and gravitational theory

Software:

Simulink
Full Text: DOI

References:

[1] Kawashima, N., Laser interferometer gravitational wave antenna in space, Technical Report of IEICE Sane, p 94 (1994)
[2] Racca, G. D.; McNamara, P. W., The LISA Pathfinder mission, Space Sci. Rev., 151, 159-81 (2010) · doi:10.1007/s11214-009-9602-x
[3] Mei, J. W.; Bai, Y. Z.; Bao, J. H., The TianQin project: current progress on science and technology, Prog. Theor. Exp. Phys., 2021, 05A107 (2020) · doi:10.1093/ptep/ptaa114
[4] Hu, W. R.; Wu, Y. L., The Taiji program in space for gravitational wave physics and the nature of gravity, Natl Sci. Rev., 4, 2 (2017) · doi:10.1093/nsr/nwx116
[5] Touboul, P.; Rodrigues, M.; Le Clerc, G. M., The inertial reference sensor CAESAR for the laser interferometer space antenna mission, Class. Quantum Grav., 13, A259-70 (1996) · doi:10.1088/0264-9381/13/11A/035
[6] Nappo, F.; Desiderio, D.; Franzoso, A., Experience and design drivers for the inertial sensor on the LISA Pathfinder mission (2006)
[7] Beaussier, J.; Mainguy, A. M.; Olivero, A.; Rolland, R., In orbit performance of the cactus accelerometer (D5B spacecraft), Acta Astronaut., 4, 1085-102 (1977) · doi:10.1016/0094-5765(77)90008-X
[8] Luo, J.; Chen, L. S.; Duan, H. Z., Tianqin: a space-borne gravitational wave detector, Class. Quantum Grav., 33 (2015) · doi:10.1088/0264-9381/33/3/035010
[9] Armano, M., Capacitive sensing of test mass motion with nanometer precision over millimeter-wide sensing gaps for space-borne gravitational reference sensors, Phys. Rev. D, 96 (2017) · doi:10.1103/PhysRevD.96.062004
[10] Armano, M., Sub-femto-g free fall for space-based gravitational wave observatories: LISA pathfinder results, Phys. Rev. Lett., 116 (2016) · doi:10.1103/PhysRevLett.116.231101
[11] Antonucci, F., From laboratory experiments to LISA Pathfinder: achieving LISA geodesic motion, Class. Quantum Grav., 28 (2010) · doi:10.1088/0264-9381/28/9/094002
[12] Castelli, E., LISA Pathfinder Noise Performance Results: Disturbances in the Sub-MHz Frequency Band and Projection to LISA (2020), Trento: University of Trento, Trento
[13] Mei, J. W., The TianQin project: current progress on science and technology, Prog. Theor. Exp. Phys., 2021 (2021) · doi:10.1093/ptep/ptaa165
[14] Vitale, S.; Speake, C., Design issues for LISA inertial sensors (1998)
[15] Bernard, A.; Touboul, P., Development of the high sensitivity GRADIO accelerometers-the Aristoteles gradiometer mission preparation, NASA STI/Recon Technical Report A, 1991, 163-76 (1991)
[16] Li, G.; Wu, S. C.; Zhou, Z. B.; Bai, Y. Z.; Hu, M.; Luo, J., Design and validation of a high-voltage levitation circuit for electrostatic accelerometers, Rev. Sci. Instrum., 84, 310-4 (2013) · doi:10.1063/1.4833398
[17] Zhou, Z. B.; Liu, L.; Tu, H. B.; Bai, Y. Z.; Luo, J., Seismic noise limit for ground-based performance measurements of an inertial sensor using a torsion balance, Class. Quantum Grav., 27 (2010) · Zbl 1201.83009 · doi:10.1088/0264-9381/27/17/175012
[18] Thrane, E.; Anderson, R. P.; Levin, Y., Toward terrestrial detection of milliHertz gravitational waves with magnetically assisted torsion pendulums, Phys. Rev. E, 71 (2005) · doi:10.1103/PhysRevE.71.036109
[19] Bassan, M., Approaching free fall on two degrees of freedom: simultaneous measurement of residual force and torque on a double torsion pendulum, Phys. Rev. Lett., 116 (2016) · doi:10.1103/PhysRevLett.116.051104
[20] Fan, X. D.; Qi, L.; Liu, L. X., Coupled modes of the torsion pendulum, Phys. Lett. A, 372, 547-52 (2008) · Zbl 1217.70013 · doi:10.1016/j.physleta.2007.08.020
[21] Touboul, PFoulon, B1996ASTRE accelerometer. Verification tests in drop tower BremenOffice national D etudes et de recherches aerospatiales ONERA-publications-tp
[22] Hancer, M.; Bitirgen, R.; Bayezit, I., Designing 3-DOF hardware-in-the-loop test platform controlling multirotor vehicles, vol 51, 119-24 (2018) · doi:10.1016/j.ifacol.2018.06.058
[23] Sanaz, P.; Tuyen, V., Evaluation of the interface accuracy for power hardware-in-the-loop experiments, Electr. Power Compon. Syst., 45, 763-73 (2017) · doi:10.1080/15325008.2017.1294634
[24] Huijgens, L.; Vrijdag, A.; Hopman, H., Hardware in the loop experiments with ship propulsion systems in the towing tank: scale effects, corrections and demonstration, Ocean Eng., 226 (2021) · doi:10.1016/j.oceaneng.2021.108789
[25] Robertson, A.; Inalhan, G.; How, J. P., Formation control strategies for a separated spacecraft interferometer, vol 6, 4142-7 (1999), IEEE
[26] Russano, G.; Cavalleri, A.; Cesarini, A., Measuring fN force variations in the presence of constant nN forces: a torsion pendulum ground test of the LISA Pathfinder free-fall mode, Class. Quantum Grav., 35 (2018) · doi:10.1088/1361-6382/aaa00f
[27] Hueller, M.; Cavalleri, A.; Dolesi, R.; Vitale, S.; Weber, W. J., Torsion pendulum facility for ground testing of gravitational sensors for LISA, Class. Quantum Grav., 19, 1757 (2002) · doi:10.1088/0264-9381/19/7/372
[28] Carbone, L.; Cavalleri, A.; Dolesi, R.; Hoyle, C. D.; Hueller, M.; Vitale, S.; Weber, W. J., Achieving geodetic motion for LISA test masses: ground testing result, Phys. Rev. Lett., 91 (2003) · doi:10.1103/PhysRevLett.91.151101
[29] Schleicher, A2013SI.ASD.TN.2011 ISS02.02 test mass actuation algorithm for DFACS
[30] Meshksar, N.; Ferraioli, L.; Mance, D.; Ten Pierick, J.; Giardini, D., Analysis of the accuracy of actuation electronics for the laser interferometer space antenna, Rev. Sci. Instrum., 91 (2020) · doi:10.1063/5.0018536
[31] Mance, D., Development of Electronic System for Sensing and Actuation of Test Mass of the Inertial Sensor (2012), Split: University of Split, Split
[32] William, J.; Antonella, C.; Rita, D.; Fontana, G.; Hueller, M.; Vitale, S., Position sensors for LISA drag-free control, Class. Quantum Grav., 19, 1751-6 (2002) · doi:10.1088/0264-9381/19/7/371
[33] Gan, L.; Mance, D.; Zweifel, P., Actuation to sensing crosstalk investigation in the inertial sensor front-end electronics of the laser interferometer space antenna pathfinder satellite, Sens. Actuators A, 167, 574-80 (2011) · doi:10.1016/j.sna.2011.03.011
[34] Bassan, M.; Cavalleri, A.; De Laurentis, M., Actuation crosstalk in free-falling systems: torsion pendulum results for the engineering model of the LISA pathfinder gravitational reference sensor, Astropart. Phys., 97, 19-26 (2018) · doi:10.1016/j.astropartphys.2017.10.010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.