×

Double tracking control for the directed complex dynamic network via the state observer of outgoing links. (English) Zbl 1520.93189

Summary: From the perspective of large system, a directed complex dynamic network (DCDN) is regarded as being made up of the nodes subsystem (NS) and the links subsystem (LS), which are coupled to each other. Different from previous studies, which propose the dynamic model of LS with the matrix differential equations, this paper describes the dynamic behaviour of LS with the outgoing links vector at every node, by which the dynamic model of LS can be represented as the vector differential equation to form the outgoing links subsystem (OLS). Due to the fact that vectors have more flexible mathematical properties than matrices, this paper proposes the more convenient mathematic method to investigate the double tracking control problem of NS and OLS. Under the condition that the states of NS are available and the states of OLS are unavailable, the asymptotical state observer of OLS is designed, by which the tracking controllers of NS and OLS are synthesised to ensure achieving the double tracking goals. Finally, an example simulation for supporting the theoretical results is also provided.

MSC:

93B70 Networked control
93B53 Observers
Full Text: DOI

References:

[1] Baggio, G.; Bassett, D. S.; Pasqualetti, F., Data-driven control of complex networks, Nature Communications, 12, 1, 1-13 (2021) · doi:10.1038/s41467-021-21554-0
[2] Barnett, S., Matrix differential equations and Kronecker products, SIAM Journal on Applied Mathematics, 24, 1, 1-5 (1973) · Zbl 0252.34012 · doi:10.1137/0124001
[3] Cai, C. X.; Wang, Z. D.; Xu, J.; Liu, X. H.; Alsaadi, F. E., An integrated approach to global synchronization and state estimation for nonlinear singularly perturbed complex networks, IEEE Transactions on Cybernetics, 45, 8, 1597-1609 (2014) · doi:10.1109/TCYB.2014.2356560
[4] Chen, Y. G.; Wang, Z. D.; Shen, B.; Dong, H. L., Exponential synchronization for delayed dynamical networks via intermittent control: Dealing with actuator saturations, IEEE Transactions on Neural Networks and Learning Systems, 30, 4, 1000-1012 (2018) · doi:10.1109/TNNLS.2018.2854841
[5] Chu, X. Y.; Nian, X. H.; Sun, M. P.; Wang, H. B.; Xiong, H. Y., Robust observer design for multi-motor web-winding system, Journal of the Franklin Institute, 355, 12, 5217-5239 (2018) · Zbl 1395.93254 · doi:10.1016/j.jfranklin.2018.05.002
[6] Chu, X. Y.; Nian, X. H.; Xiong, H. Y.; Wang, H. B., Robust fault estimation and fault tolerant control for three-motor web-winding systems, International Journal of Control, 94, 11, 3009-3021 (2021) · Zbl 1478.93134 · doi:10.1080/00207179.2020.1749887
[7] Colleran, H., Market integration reduces kin density in women’s ego-networks in rural Poland, Nature Communications, 11, 1, 1-9 (2020) · doi:10.1038/s41467-019-14158-2
[8] Duan, Z. S.; Chen, G. R.; Huang, L., Synchronization of weighted networks and complex synchronized regions, Physics Letters A, 372, 21, 3741-3751 (2008) · Zbl 1220.34074 · doi:10.1016/j.physleta.2008.02.056
[9] Feng, Y. T.; Duan, Z. S.; Lv, Y. Z.; Ren, W., Some necessary and sufficient conditions for synchronization of second-order interconnected networks, IEEE Transactions on Cybernetics, 49, 12, 4379-4387 (2018) · doi:10.1109/TCYB.2018.2864625
[10] Gao, P. T.; Wang, Y. H.; Liu, L. Z.; Zhang, L. L.; Tang, X., Asymptotical state synchronization for the controlled directed complex dynamic network via links dynamics, Neurocomputing, 448, 60-66 (2021) · doi:10.1016/j.neucom.2021.03.095
[11] Gao, Z. L.; Wang, Y. H., The structural balance analysis of complex dynamical networks based on nodes’ dynamical couplings, PLoS One, 13, 1, e0191941 (2018) · doi:10.1371/journal.pone.0191941
[12] Gao, Z. L.; Wang, Y. H.; Peng, Y.; Liu, L. Z.; Chen, H. G., Adaptive control of the structural balance for a class of complex dynamical networks, Journal of Systems Science and Complexity, 33, 3, 725-742 (2020) · Zbl 1447.93167 · doi:10.1007/s11424-020-8093-4
[13] Gao, Z. L.; Wang, Y. H.; Xiong, J.; Pan, Y.; Huang, Y. Y., Structural balance control of complex dynamical networks based on state observer for dynamic connection relationships, Complexity, 2020 (2020) · Zbl 1435.93013 · doi:10.1155/2020/5075487
[14] Gao, Z. L.; Wang, Y. H.; Xiong, J.; Zhang, L. L.; Wang, W. L., Robust state observer design for dynamic connection relationships in complex dynamical networks, International Journal of Control, Automation and Systems, 17, 2, 336-344 (2019) · doi:10.1007/s12555-018-0315-3
[15] Gao, Z. L.; Wang, Y. H.; Zhang, L. L., Adaptive control of structural balance for complex dynamical networks based on dynamic coupling of nodes, International Journal of Modern Physics B, 32, 4 (2018) · Zbl 1431.91304 · doi:10.1142/S021797921850042X
[16] Hao, Y. Q.; Wang, Q. Y.; Duan, Z. S.; Chen, G. R., Controllability of Kronecker product networks, Automatica, 110 (2019) · Zbl 1429.93039 · doi:10.1016/j.automatica.2019.108597
[17] Huang, Y. Y.; Huang, L. W.; Wang, Y. H.; Peng, Y. X.; Yu, F., Shape synchronization in driver-response of 4-D chaotic system and its application in image encryption, IEEE Access, 8 (2020) · doi:10.1109/ACCESS.2020.3011524
[18] Li, J. Y.; Wang, Z. D.; Lu, R. Q.; Xu, Y., Distributed filtering under constrained bit rate over wireless sensor networks: Dealing with bit rate allocation protocol, IEEE Transactions on Automatic Control (2022) · Zbl 07743775 · doi:10.1109/TAC.2022.3159486
[19] Liu, C.; Duan, Z. S.; Chen, G. R.; Huang, L., L2 norm performance index of synchronization and LQR control synthesis of complex networks, Automatica, 45, 8, 1879-1885 (2009) · Zbl 1185.93009 · doi:10.1016/j.automatica.2009.04.004
[20] Liu, L. Z.; Wang, Y. H.; Gao, Z. L., Tracking control for the dynamic links of discrete-time complex dynamical network via state observer, Applied Mathematics and Computation, 369 (2020) · Zbl 1433.93074 · doi:10.1016/j.amc.2019.124857
[21] Liu, L. Z.; Wang, Y. H.; Li, X. X.; Gao, Z. L., Structural balance for discrete-time complex dynamical network associated with the controlled nodes, Modern Physics Letters B, 34, 10 (2020) · doi:10.1142/S0217984920500980
[22] Pagilla, P. R.; Siraskar, N. B.; Dwivedula, R. V., Decentralized control of web processing lines, IEEE Transactions on Control Systems Technology, 15, 1, 106-117 (2006) · doi:10.1109/TCST.2006.883345
[23] Pan, L. L.; Shao, H. B.; Xi, Y. G.; Li, D. W., Bipartite consensus problem on matrix-valued weighted directed networks, Science China Information Sciences, 64, 4, 1-3 (2021) · doi:10.1007/s11432-018-9710-8
[24] Peng, Y.; Wang, Y. H.; Liu, L. Z., Asymptotically tracking control for discrete time-varying link system to structural balance via determined external stimulations, International Journal of Modern Physics B, 34, 17 (2020) · Zbl 1443.93074 · doi:10.1142/S0217979220501441
[25] Tajudeen, M. M.; Ali, M. S.; Subkrajang, S. A.; Jirawattanapanit, K.; Rajchakit, G., Adaptive event-triggered control for complex dynamical network with random coupling delay under stochastic deception attacks, Complexity, 2022 (2022) · doi:10.1155/2022/8761612
[26] Thamilmaran, K.; Lakshmanan, M.; Venkatesan, A., Hyperchaos in a modified canonical Chua’s circuit, International Journal of Bifurcation and Chaos, 14, 1, 221-243 (2004) · Zbl 1067.94597 · doi:10.1142/S0218127404009119
[27] Tuan, H. D.; Apkarian, P.; Narikiyo, T.; Yamamoto, Y., Parameterized linear matrix inequality techniques in fuzzy control system design, IEEE Transactions on Fuzzy Systems, 9, 2, 324-332 (2001) · doi:10.1109/91.919253
[28] Vanantwerp, J. G.; Braatz, R. D., A tutorial on linear and bilinear matrix inequalities, Journal of Process Control, 10, 4, 363-385 (2000) · doi:10.1016/S0959-1524(99)00056-6
[29] Wang, J. L.; Wei, P. C.; Wu, H. N.; Huang, T. W.; Xu, M., Pinning synchronization of complex dynamical networks with multiweights, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 49, 7, 1357-1370 (2017) · doi:10.1109/TSMC.2017.2754466
[30] Wang, X. M.; Ran, Y. J.; Jia, T., Measuring similarity in co-occurrence data using ego-networks, Chaos: An Interdisciplinary Journal of Nonlinear Science, 30, 1 (2020) · doi:10.1063/1.5129036
[31] Wang, Y. H.; Fan, Y. Q.; Wang, Q. Y.; Zhang, Y., Stabilization and synchronization of complex dynamical networks with different dynamics of nodes via decentralized controllers, IEEE Transactions on Circuits and Systems I: Regular Papers, 59, 8, 1786-1795 (2012) · Zbl 1468.93139 · doi:10.1109/TCSI.2011.2180439
[32] Wang, Y. H.; Wang, W. L.; Zhang, L. L., State synchronization of controlled nodes via the dynamics of links for complex dynamical networks, Neurocomputing, 384, 225-230 (2020) · doi:10.1016/j.neucom.2019.12.055
[33] Xing, W.; Shi, P.; Agarwal, R. K.; Zhao, Y. X., A survey on global pinning synchronization of complex networks, Journal of the Franklin Institute, 356, 6, 3590-3611 (2019) · Zbl 1411.93021 · doi:10.1016/j.jfranklin.2019.02.021
[34] Yu, W. W.; Chen, G. R.; Lü, J. H., On pinning synchronization of complex dynamical networks, Automatica, 45, 2, 429-435 (2009) · Zbl 1158.93308 · doi:10.1016/j.automatica.2008.07.016
[35] Zhang, L. L.; Wang, Y. H.; Wang, Q. Y., Synchronization for time-varying complex dynamical networks with different-dimensional nodes and non-dissipative coupling, Communications in Nonlinear Science and Numerical Simulation, 24, 1-3, 64-74 (2015) · Zbl 1463.93234 · doi:10.1016/j.cnsns.2014.12.012
[36] Zhang, L. L.; Wang, Y. H.; Wang, Q. Y.; Lei, Y. F.; Wang, F., Matrix projective cluster synchronization for arbitrarily coupled networks with different dimensional nodes via nonlinear control, International Journal of Robust and Nonlinear Control, 29, 11, 3650-3665 (2019) · Zbl 1426.93246 · doi:10.1002/rnc.4574
[37] Zhang, L. L.; Wang, Y. H.; Wang, Q. Y.; Qiao, S. H.; Wang, F., Generalized projective synchronization for networks with one crucial node and different dimensional nodes via a single controller, Asian Journal of Control, 22, 4, 1471-1483 (2020) · Zbl 07872683 · doi:10.1002/asjc.2053
[38] Zhang, X.; Wang, Y. H.; Cheng, D. Z., Output tracking of boolean control networks, IEEE Transactions on Automatic Control, 65, 6, 2730-2735 (2019) · Zbl 1533.93325 · doi:10.1109/TAC.2019.2944903
[39] Zhao, P.; Wang, Y. H., Asymptotical stability for complex dynamical networks via link dynamics, Mathematical Methods in the Applied Sciences, 43, 15, 8706-8713 (2020) · Zbl 1457.34094 · doi:10.1002/mma.6533
[40] Zhou, J.; Lu, J. A.; Lü, J. H., Adaptive synchronization of an uncertain complex dynamical network, IEEE Transactions on Automatic Control, 51, 4, 652-656 (2006) · Zbl 1366.93544 · doi:10.1109/TAC.2006.872760
[41] Zhu, S. B.; Zhou, J.; Chen, G. R.; Lu, J. A., A new method for topology identification of complex dynamical networks, IEEE Transactions on Cybernetics, 51, 4, 2224-2231 (2019) · doi:10.1109/TCYB.2019.2894838
[42] Zhu, S. B.; Zhou, J.; Yu, X. H.; Lu, J. A., Bounded synchronization of heterogeneous complex dynamical networks: A unified approach, IEEE Transactions on Automatic Control, 66, 4, 1756-1762 (2020) · Zbl 1536.93845 · doi:10.1109/TAC.2020.2995822
[43] Zhu, S. B.; Zhou, J.; Yu, X. H.; Lu, J. A., Synchronization of complex networks with nondifferentiable time-varying delay, IEEE Transactions on Cybernetics, 52, 5, 3342-3348. (2020) · doi:10.1109/TCYB.2020.3022976
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.