×

A linear, decoupled fractional time-stepping method for the nonlinear fluid-fluid interaction. (English) Zbl 1423.76253

Summary: In this paper, a linear decoupled fractional time stepping method is proposed and developed for the nonlinear fluid-fluid interaction governed by the two Navier-Stokes equations. Partitioned time stepping method is applied to two-physics problems with stiffness of the coupling terms being treated explicitly and is also unconditionally stable. As for each fluid, the velocity and pressure are respectively determined by just solving one vector-valued quasi-elliptic equation and the Possion equation with homogeneous Neumann boundary condition per time step. Therefore, the cost of the fluid-fluid interaction is dominant to solve four simple linear equations, which greatly reduces the computational cost of the whole system. The method exploits properties of the fluid-fluid system to establish its stability and convergence with the same results as the standard scheme. Finally, numerical experiments are presented to show the performance of the proposed method.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76M20 Finite difference methods applied to problems in fluid mechanics
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
76D05 Navier-Stokes equations for incompressible viscous fluids
35R11 Fractional partial differential equations
76T99 Multiphase and multicomponent flows
Full Text: DOI

References:

[1] C.Bernardi et al., A model of two coupled turbulent fluids. Part II: Numerical approximations by spectral discretization, SIAM J. Num. Anal. vol. 40 (2003) pp. 2368-2394. · Zbl 1129.76327
[2] D.Bresch, J.Koko, Operator‐splitting and Lagrange multiplier domain decomposition methods for numerical simulation of two coupled Navier-Stokes fluids, Int. J. Appl. Math. Comput. Sci. vol. 16 (2006) pp. 419-429. · Zbl 1119.35346
[3] J.Li, Y.He, Z.Chen, A new stabilized finite element method for the transient Navier-Stokes equations, Comput. Methods Appl. Mech. Eng. vol. 197 (2007) pp. 22-35. · Zbl 1169.76392
[4] J.Li, L.Mei, Y.He, A pressure‐Poisson stabilized finite element method for the non‐stationary Stokes equations to circumvent the inf‐sup condition, Appl. Math. Comput. vol. 182 (2006) pp. 24-35. · Zbl 1119.65092
[5] J. ‐L.Lions, R.Temam, S.Wang, Models for the coupled atmosphere and ocean (CAO I), Comput. Mech. Adv. vol. 1 (1993) pp. 1-54. · Zbl 0805.76011
[6] J. ‐L.Lions, R.Temam, S.Wang, Numerical analysis of the coupled atmosphere‐ocean models (CAO II), Comput. Mech. Adv. vol. 1 (1993) pp. 55-119. · Zbl 0805.76052
[7] R.Li et al., A stabilized finite element method based on two local gauss integrations for a coupled Stokes-Darcy, J. Comput. Appl. Math. vol. 292 (2016) pp. 92-104. · Zbl 1329.76181
[8] J.Li, J.Wang, X.Ye, Superconvergence by L2‐projections for stabilized finite element methods for the stokes equations, Int. J. Numer. Anal. Model. vol. 6 (2009) pp. 711-723. · Zbl 1499.65672
[9] R.Temam, Navier-Stokes equations, theory and Numerical analysis. 3rd ed., North‐Holland, Amsterdam, 1984. · Zbl 0568.35002
[10] J.Connors, An ensemble‐based conventional turbulence model for fluid-fluid interaction, Int. J. Numer. Anal. Mod. vol. 15 (2018) pp. 492-519. · Zbl 1395.76039
[11] J.Connors, J.Howell, W.Layton, Decoupled time stepping methods for fluid‐fluid interaction, SIAM J. Num. Anal. vol. 50 (2012) pp. 1297-1319. · Zbl 1457.65102
[12] V.Girault, P. A.Raviart, Finite element method for Navier-Stokes equations: Theory and algorithms, Springer‐Verlag, Berlin, Heidelberg, 1987.
[13] M.Gunzburger, N.Jiang, M.Schneier, A higher‐order ensemble/proper orthogonal decomposition method for the nonstationary Navier-Stokes equations, Int. J. Numer. Anal. Mod. vol. 15 (2018) pp. 608-627. · Zbl 1402.35207
[14] X.He et al., A domain decomposition method for the steady‐state Navier-Stokes-Darcy model with Beavers-Joseph interface condition, SIAM J. Sci. Comp. vol. 37 (2015) pp. 264-290. · Zbl 1325.76119
[15] J. G.Heywood, R.Rannacher, Finite‐element approximations of the nonstationary Navier-Stokes problem. Part I: Regularity of solutions and second‐order spatial discretization, SIAM J. Numer. Anal. vol. 19 (1982) pp. 275-311. · Zbl 0487.76035
[16] J. G.Heywood, R.Rannacher, Finite‐element approximation of the nonstationary Navier-Stokes problem. Part IV: Error analysis for second‐order time discretization, SIAM J. Numer. Anal. vol. 27 (1990) pp. 353-384. · Zbl 0694.76014
[17] W.Layton, “Introduction to the numerical analysis of incompressible viscous flows,” in Comput. Sci. Eng., vol. 6, SIAM, Philadelphia, 2008. · Zbl 1153.76002
[18] W.Layton, H.Tran, C.Trenchea, Analysis of long time stability and errors of two partitioned methods for uncoupling evolutionary groundwater‐surface water flows, SIAM J. Numer. Anal. vol. 51 (2013) pp. 248-272. · Zbl 1370.76173
[19] J.Li, P.Huang, J.Su and Z.Chen, A linear, stabilized, non‐spatial iterative, partitioned time stepping method for the nonlinear Navier-Stokes/Navier-Stokes interaction model, submitted for publication. · Zbl 1513.65369
[20] L.Rebholz, S.Wise, M.Xiao, Penalty‐projection schemes for the Cahn-Hilliard Navier-Stokes diffuse interface model of two phase flow, and their connection to divergence‐free coupled schemes, Int. J. Numer. Anal. Model. vol. 15 (2018) pp. 649-676. · Zbl 1395.35109
[21] J.Zhang, H.Rui, Y.Cao, A partitioned method with different time steps for coupled Stokes and Darcy flows with transport, Int. J. Numer. Anal. Model. vol. 16 (2016) pp. 463-498. · Zbl 1427.65215
[22] A. J.Chorin, Numerical solution of the Navier-Stokes equations, Math. Comp. vol. 22 (1968) pp. 745-762. · Zbl 0198.50103
[23] R.Temam, Sur lapproximation de la solution deséquations de Navier-Stokes par la méthode des pas fractionnairesii, Arch. Rat. Mech. Anal. vol. 33 (1969) pp. 377-385. · Zbl 0207.16904
[24] A. S.Almgren et al., A conservative adaptive projection method for the variable density incompressible Navier-Stokes equations, J. Comput. Phys. vol. 142 (1998) pp. 1-46. · Zbl 0933.76055
[25] J. B.Bell, D. L.Marcus, A second‐order projection method for variable‐density flows, J. Comput. Phys. vol. 101 (1992) pp. 334-348. · Zbl 0759.76045
[26] J. L.Guermond, L.Quartapelle, A projection FEM for variable density incompressible flows, J. Comput. Phys. vol. 165 (2000) pp. 167-188. · Zbl 0994.76051
[27] Y.He, J.Shen, Unconditionally stable pressure‐correction schemes for a linear fluid‐structure interaction problem, Numer. Math. Theory Methods Appl. vol. 7 (2014) pp. 537-554. · Zbl 1324.76040
[28] C.Liu, J.Shen, X.Yang, Decoupled energy stable schemes for a phase‐field model of two‐phase incompressible flows with variable density, J. Sci. Comput. vol. 62 (2015) pp. 601-622. · Zbl 1326.76064
[29] J. H.Pyo, J.Shen, Gauge-Uzawa methods for incompressible flows with variable density, J. Comput. Phys. vol. 221 (2007) pp. 181-197. · Zbl 1109.76037
[30] J.Shen, X.Yang, A phase‐field model and its numerical approximation for two‐phase incompressible flows with different densities and viscosities, J. Comput. Phys. vol. 32 (2010) pp. 1159-1179. · Zbl 1410.76464
[31] J.Shen, X.Yang, Decoupled energy stable schemes for phase‐field models of two‐phase complex fluids, SIAM J. Sci. Comp. vol. 36 (2014) pp. B122-B145. · Zbl 1288.76057
[32] J.Shen, X.Yang, Decoupled, energy stable schemes for phase‐field models of two‐phase incompressible flows, SIAM J. Numer. Anal. vol. 53 (2015) pp. 279-296. · Zbl 1327.65178
[33] J.Zhao et al., A phase‐field model and its numerical approximation for two‐phase incompressible flows with different densities and viscosities, J. Comput. Phys. vol. 305 (2016) pp. 539-556.
[34] J.Connors, J. S.Howell, A fluid-fluid interaction method using decoupled subproblems and differing time steps, Numer. Meth. Part. D. E. vol. 28 (2012) pp. 1283-1308. · Zbl 1345.86005
[35] J. L.Guermond, A.Salgado, A fractional step method based on a pressure Poisson equation for incompressible flows with variable density, C. R. Math. vol. 346 (2008) pp. 913-918. · Zbl 1144.76043
[36] J. L.Guermond, P. D.Minev, A new class of fractional step techniques for the incompressible Navier-Stokes equations using direction splitting, C. R. Math. vol. 348 (2010) pp. 581-585. · Zbl 1352.76090
[37] J. L.Guermond, A.Salgado, A splitting method for incompressible flows with variable density based on a pressure Poisson equation, J. Comput. Phys. vol. 228 (2009) pp. 2834-2846. · Zbl 1159.76028
[38] J. L.Guermond, A.Salgado, Error analysis of a fractional time‐stepping technique for incompressible flows with variable density, SIAM J. Numer. Anal. vol. 49 (2011) pp. 917-944. · Zbl 1241.76318
[39] Y.Zhang, Y.Hou, L.Shan, Stability and convergence analysis of decoupled algorithm for fluid‐fluid interaction, SIAM J. Num. Anal. vol. 54 (2016) pp. 2833-2867. · Zbl 1381.76209
[40] R. A.Adams, Sobolev spaces, Academic Press, New York, 1975. · Zbl 0314.46030
[41] P. G.Ciarlet, The finite element method for elliptic problems, North‐Holland, Amsterdam, 1978. · Zbl 0383.65058
[42] Z.Chen, Finite element methods and their applications, Springer‐Verlag, Heidelberg, 2005. · Zbl 1082.65118
[43] J.Li, Z.Chen, Optimal L^2, H^1 and L^∞ analysis of finite volume methods for the stationary Navier-Stokes equations with large data, Numer. Math. vol. 126 (2014) pp. 75-101. · Zbl 1346.76086
[44] J.Li, Z.Chen, Y.He, A stabilized multi‐level method of non‐singular finite volume solutions of the stationary 3D Navier-Stokes equations, Numer. Math. vol. 122 (2012) pp. 279-304. · Zbl 1366.76062
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.