×

Influence of nonlinear terms on dynamical behavior of graphene reinforced laminated composite plates. (English) Zbl 1481.74493

Summary: This research is focused on the effects of nonlinear terms on the dynamical behavior of graphene reinforced laminated composite plates. Firstly, the governing equations of the graphene reinforced composite thin plate subjected to transverse excitations are derived by using the Hamilton’s principle and the von Karman deformation theory. Then numerical method is applied to investigate the nonlinear behaviors of graphene reinforced composite plates. Bifurcation diagram, waveform and phase portrait are demonstrated to analyze the nonlinear dynamics of the graphene reinforced laminated composite plates. Furthermore, the effects of nonlinear terms on the dynamical behavior are discussed in detail, where both the stronger and weaker nonlinear characteristics of lower modes of the plate are presented. Moreover, some interesting phenomena are obtained in numerical simulation.

MSC:

74K20 Plates
Full Text: DOI

References:

[1] Pacheco dos Santos, G.; Balthazar, J. M.; Janzen, F. C.; Rocha, R. T.; Nabarrete, A.; Tusset, A. M., Nonlinear dynamic and SDRE control applied to a high-performance aircraft in a longitudinal flight considering atmospheric turbulence in flight, J. Sound Vib., 436, 273-285 (2018)
[2] Rafiee, M.; Yang, J.; Kitipornchai, S., Large amplitude vibration of carbon nanotube reinforced functionally graded composite beams with piezoelectric layers, Compos. Struct., 96, 716-725 (2013)
[3] Huang, B.; Guo, Y.; Wang, J.; Du, J. K.; Qian, Z. H.; Ma, T. F.; Yi, L. J., Bending and free vibration analyses of antisymmetrically laminated carbon nanotube-reinforced functionally graded plates, J. Compos. Mater., 51, 3111-3125 (2016)
[4] Peng, H. F.; Wang, C.; Wang, P., Effect of fiber orientation on vibration characteristic of composite laminated plates, Appl. Mech. Mater., 670-671, 158-163 (2014)
[5] Li, B.; Wang, X., Nonlinear frequency shift behavior of graphene-elastic-piezoelectric laminated films as a nano-mass detector, Int. J. Solids Struct., 84, 17-26 (2016)
[6] Amabili, M.; Alijani, F.; Delannoy, J., Damping for large-amplitude vibrations of plates and curved panels, part 2: identification and comparisons, Int. J. Non Linear Mech., 85, 226-240 (2016)
[7] Amabili, M., Nonlinear damping in large-amplitude vibrations: modelling and experiments, Nonlinear Dyn., 93, 5-18 (2018)
[8] Guo, X. Y.; Zhang, W., Nonlinear vibrations of a reinforced composite plate with carbon nanotubes, Compos. Struct., 135, 96-108 (2016)
[9] Shen, H. S.; Xiang, Y.; Lin, F., Nonlinear vibration of functionally graded graphene-reinforced composite laminated plates in thermal environments, Comput. Methods Appl. Mech. Eng., 319, 175-193 (2017) · Zbl 1439.74140
[10] Moraes, F. D.H.; Silveira, M.; Gonçalves, P. J.P., On the dynamics of a vibration isolator with geometrically nonlinear inerter, Nonlinear Dyn., 93, 1325-1340 (2018)
[11] Meddeb, A. B.; Tighe, T.; Ounaies, Z.; Lopez-Pamies, O., Extreme enhancement of the nonlinear elastic response of elastomer nanoparticulate composites via interphases, Compos. Part B: Eng., 156, 166-173 (2019)
[12] Novoselov, A. K.; Geim, S. V.; Morozov, D.; Jiang, Y.; Zhang, S. V.; Dubonos, I.; Grigorieva, V.; Firsov, A. A., Electric field effect in atomically thin carbon films, Science, 306, 666-669 (2004)
[13] Shiu, S. C.; Tsai, J. L., Characterizing thermal and mechanical properties of graphene/epoxy nanocomposites, Composites Part B, 56, 691-697 (2014)
[14] King, J. A.; Klimek, D. R.; Miskioglu, I.; Odegard, G. M., Mechanical properties of graphene nano platelet/epoxy composites, J. Appl. Polym. Sci., 128, 4217-4223 (2013)
[15] Chandra, Y.; Chowdhury, R.; Scarpa, F.; Adhikari, S.; Sienz, J.; Arnold, C.; Murmu, T.; Bould, D., Vibration frequency of graphene based composites: a multiscale approach, Mater. Sci. Eng.: B, 177, 303-310 (2012)
[16] Rahman, R.; Haque, A., Molecular modeling of cross linked graphene-epoxy nanocomposites for characterization of elastic constants and interfacial properties, Composites Part B, 54, 353-364 (2013)
[17] Spanos, P. D.; Malara, G., Nonlinear random vibrations of beams with fractional derivative elements, J. Eng. Mech., 140, Article 04014069 pp. (2014)
[18] Spanos, K. N.; Georgantzinos, S. K.; Anifantis, N. K., Mechanical properties of grapheme nanocomposites: a multiscale finite element prediction, Compos. Struct., 132, 536-544 (2015)
[19] Kiani, Y., Buckling of functionally graded graphene reinforced conical shells under external pressure in thermal environment, Compos. Part B: Eng., 156, 128-137 (2019)
[20] Sobhy, M., Thermomechanical bending and free vibration of single-layered graphene sheets embedded in an elastic medium, Physica E, 56, 400-409 (2014)
[21] Ansari, R.; Sahmani, S., Prediction of biaxial buckling behavior of single-layered graphene sheets based on nonlocal plate models and molecular dynamics simulations, Appl. Surf. Sci., 37, 7338-7351 (2015) · Zbl 1438.74063
[22] Arani, A. G.; Jalaei, M. H., Nonlocal dynamic response of embedded single-layered graphene sheet via analytical approach, J. Eng. Math., 98, 129-144 (2016) · Zbl 1358.82033
[23] Xu, Y. M.; Shen, H. S.; Zhang, C. L., Nonlocal plate model for nonlinear bending of bilayer graphene sheets subjected to transverse loads in thermal environments, Compos. Struct., 98, 294-302 (2013)
[24] Papageorgiou, D. G.; Kinloch, I. A.; Young, R. J., Mechanical properties of graphene and graphene-based nanocomposites, Prog. Mater Sci., 90, 75-127 (2017)
[25] Young, R. J.; Kinloch, I. A.; Lei, G.; Novoselov, K. S., The mechanics of graphene nanocomposites: a review, Compos. Sci. Technol., 72, 1459-1476 (2012)
[26] Li, H. B.; Li, Y.; Wang, D.; Huang, X. X., Nonlinear vibration characteristics of graphene/piezoelectric sandwich films under electric loading based on nonlocal elastic theory, J. Sound Vib., 358, 285-300 (2015)
[27] Song, M. T.; Kitipornchai, S.; Yang, J., Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets, Compos. Struct., 159, 579-588 (2017)
[28] Zhan, H. Z.; Yang, F. P.; Wang, X., Nonlinear dynamic characteristics of bi-graphene sheets/piezoelectric laminated films considering high order van der Walls force and scale effect, Appl. Math. Model., 56, 289-303 (2018) · Zbl 1480.74060
[29] Du, Y. F.; Niu, B.; Guo, Y. X.; Li, J. Q., Double Hopf bifurcation induces coexistence of periodic oscillations in a diffusive Ginzburg-Landau model, Phys. Lett. A (2019) · Zbl 1471.82032
[30] Dong, Q.; Leung, A. Y.T., The number of limit cycle bifurcation diagrams for the generalized mixed Rayleigh-Liénard oscillator, J. Sound Vib., 322, 393-400 (2009)
[31] Gu, X. J.; Hao, Y. X.; Zhang, W.; Liu, L. T.; Chen, J., Free vibration of rotating cantilever pre-twisted panel with initial exponential function type geometric imperfection, Appl. Math. Model., 68, 327-352 (2019) · Zbl 1481.74260
[32] Yu, Y.; Si, J. H.; Yan, L. H.; Li, M.; Hou, X., Enhanced nonlinear absorption and ultrafast carrier dynamic in graphene/gold nanoparticles nanocomposites, Carbon, 148, 72-79 (2019)
[33] Dai, Z.H., Wang, G.R., Zheng, Z.Y., Wang, Y.L., Zhang, S., Qi, X.Y., Tan, P.H., Liu, L.Q., Xu, Z.P., Li, Q.Y., Cheng, Z.H. and Zhang, Z.Mechanical responses of boron-doped monolayer graphene. Carbon. 147:594-601 (2019).
[34] Rahman, R.; Haque, A., Molecular modeling of crosslinked graphene-epoxy nano-composites for characterization of elastic constants and interfacial properties, Compos. Part B: Eng., 54, 353-364 (2013)
[35] Wu, H.; Kitpornchai, S.; Yang, J., Thermal buckling and postbuckling of functionally graded graphene nanocomposite plates, Mater. Des., 132, 430-441 (2017)
[36] Reddy, J.N.Mechanics of Laminated Composite Plates and Shells Theory and Analysis. (2003).
[37] Singha, M. K.; Prakash, T.; Ganapathi, M., Finite element analysis of functionally graded plates under transverse load, Finite Elements Anal. Des., 47, 4, 453-460 (2011)
[38] Hao, Y. X.; Zhang, W.; Yang, J., Nonlinear dynamics of a FGM plate with two clamped opposite edges and two free edges, Acta Mech. Solida Sin., 27, 394-406 (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.