×

Plastic design theory of frozen wall thickness in an ultradeep soil layer considering large deformation characteristics. (English) Zbl 1427.74126

Summary: Frozen wall design theory is a key technique of the freezing method. However, previous design theories for a deep artificial frozen wall have neglected the influence of shaft flank displacement, that is, the displacement of the inner boundary of a frozen wall. Thus, the associated designs tend to be unsafe and earthwork excavations tend to be underestimated. This study builds a new design theory for frozen wall thickness which considers the influence of a large strain and obtains new solution formulas for the thickness and excavation radius before deformation occurs. The analytical results are compared with numerical calculation results by analyzing the influences of various parameters, such as crustal stress, cohesion and internal friction angle of frozen soil, and cohesion and internal friction angle of unfrozen soil as well as the elastic modulus of the ground, on the frozen wall thickness and the shaft flank displacement. The results indicate that the new formula is applicable for large deformation calculation with a strain of up to 0.2. The new formula can accurately calculate the amount of excavation earthwork and serves as a safer and more reasonable theoretical support for the design of frozen walls in ultradeep soil layers.

MSC:

74L10 Soil and rock mechanics
74C05 Small-strain, rate-independent theories of plasticity (including rigid-plastic and elasto-plastic materials)
Full Text: DOI

References:

[1] Andersland, O. B.; Ladanyi, B., Frozen Ground Engineering (2004), Hoboken, NJ, USA: John Wiley & Sons, Hoboken, NJ, USA
[2] Yang, R. S.; Wang, Q. X.; Yang, L. Y., A closed-form elastic solution for irregular frozen wall of inclined shaft considering the interaction with ground, International Journal of Rock Mechanics and Mining Sciences, 100, 62-72 (2017) · doi:10.1016/j.ijrmms.2017.10.008
[3] Yang, W. H., Development and prospect of freezing shaft sinking technology in China over the past decade, High-Level Academic Forum for the 50th Anniversary of China Coal Society (2012), China Coal Society
[4] Yang, W.-H.; Yang, Z.-J.; Bo, D.-L., Elastic-plastic design theory of frozen soil wall based on interaction between frozen wall and surrounding rock, Chinese Journal of Geotechnical Engineering, 35, 1, 175-180 (2013)
[5] Yang, W.-H.; Du, Z.-B.; Yang, Z.-J.; Bo, D.-L., Plastic design theory of frozen soil wall based on interaction between frozen soil wall and surrounding rock, Chinese Journal of Geotechnical Engineering, 35, 10, 1857-1862 (2013)
[6] Vrakas, A.; Anagnostou, G., A finite strain closed-form solution for the elastoplastic ground response curve in tunnelling, International Journal for Numerical and Analytical Methods in Geomechanics, 38, 11, 1131-1148 (2014) · doi:10.1002/nag.2250
[7] Vrakas, A.; Anagnosto, G., A simple equation for obtaining finite strain solutions from small strain analyses of tunnels with very large convergences, Géotechnique, 65, 11, 936-944 (2015) · doi:10.1680/jgeot.15.P.036
[8] Carter, J. P.; Booker, J. R.; Yeung, S. K., Cavity expansion in cohesive frictional soils, Géotechnique, 36, 3, 349-358 (1986) · doi:10.1680/geot.1986.36.3.349
[9] Detournay, E., Elastoplastic model of a deep tunnel for a rock with variable dilatancy, Rock Mechanics and Rock Engineering, 19, 2, 99-108 (1986) · doi:10.1007/BF01042527
[10] Yu, H. S.; Houlsby, G. T., Finite cavity expansion in dilatant soils: loading analysis, Géotechnique, 41, 2, 173-183 (1991) · doi:10.1680/geot.1991.41.2.173
[11] Yu, H. S.; Rowe, R. K., Plasticity solutions for soil behaviour around contracting cavities and tunnels, International Journal for Numerical and Analytical Methods in Geomechanics, 23, 12, 1245-1279 (1999) · Zbl 0973.74052 · doi:10.1002/(SICI)1096-9853(199910)23:12<1245::AID-NAG30>3.0.CO;2-W
[12] Cao, L. F.; Teh, C. I.; Chang, M. F., Undrained cavity expansion in modified Cam clay I: theoretical analysis, Géotechnique, 51, 4, 323-334 (2001) · doi:10.1680/geot.51.4.323.39395
[13] Yu, H. S.; Carter, J. P., Rigorous similarity solutions for cavity expansion in cohesive-frictional soils, International Journal of Geomechanics, 2, 2, 233-258 (2002) · doi:10.1061/(ASCE)1532-3641(2002)2:2(233)
[14] Zhao, J. D.; Wang, G., Unloading and reverse yielding of a finite cavity in a bounded cohesive-frictional medium, Computers & Geosciences, 37, 1-2, 239-245 (2010) · doi:10.1016/j.compgeo.2009.08.002
[15] Chen, S. L.; Abousleiman, Y. N., Exact undrained elasto-plastic solution for cylindrical cavity expansion in modified cam clay soil, Géotechnique, 62, 5, 447-456 (2012) · doi:10.1680/geot.11.p.027
[16] Cohen, T.; Durban, D., Fundamental solutions of cavitation in porous solids: a comparative study, Acta Mechanica, 224, 8, 1695-1707 (2013) · Zbl 1321.74012 · doi:10.1007/s00707-013-0837-y
[17] Vrakas, A.; Anagnostou, G., Finite strain elastoplastic solutions for the undrained ground response curve in tunnelling, International Journal for Numerical and Analytical Methods in Geomechanics, 39, 7, 738-761 (2015) · doi:10.1002/nag.2335
[18] Yu, H. S., Cavity Expansion Methods in Geomechanics (2000), Dordrecht, the Netherlands: Springer, Dordrecht, the Netherlands · Zbl 1026.74001 · doi:10.1007/978-94-015-9596-4
[19] Papanastasiou, P.; Durban, D., Elastoplastic analysis of cylindrical cavity problems in geomaterials, International Journal for Numerical and Analytical Methods in Geomechanics, 21, 2, 133-149 (1997) · Zbl 0916.73038 · doi:10.1002/(sici)1096-9853(199702)21:2<133::aid-nag866>3.0.co;2-a
[20] Durban, D.; Papanastasiou, P., Elastoplastic response of pressure sensitive solids, International Journal for Numerical and Analytical Methods in Geomechanics, 21, 7, 423-441 (1997) · Zbl 0893.73051 · doi:10.1002/(SICI)1096-9853(199707)21:7<423::AID-NAG882>3.3.CO;2-K
[21] Durban, D.; Papanastasiou, P., Cylindrical cavity expansion and contraction in pressure sensitive geomaterials, Acta Mechanica, 122, 1-4, 99-122 (1997) · Zbl 0884.73025 · doi:10.1007/BF01181993
[22] Durban, D.; Fleck, N. A., Spherical cavity expansion in a drucker-prager solid, Journal of Applied Mechanics, 64, 4, 743-750 (1997) · Zbl 0904.73015 · doi:10.1115/1.2788978
[23] Durban, D.; Masri, R., Dynamic spherical cavity expansion in a pressure sensitive elastoplastic medium, International Journal of Solids and Structures, 41, 20, 5697-5716 (2004) · Zbl 1159.74330 · doi:10.1016/j.ijsolstr.2004.03.009
[24] Chadwick, P., The quasi-static expansion of a spherical cavity in metals and ideal soils, The Quarterly Journal of Mechanics and Applied Mathematics, 12, 52-71 (1959) · Zbl 0085.38701 · doi:10.1093/qjmam/12.1.52
[25] Yang, W.-H.; Yang, Z.-J.; Han, T.; Zhang, C.; Bo, D.-L., Elastic design theory of frozen soil wall based on interaction between frozen soil wall and surrounding rock, Chinese Journal of Geotechnical Engineering, 34, 3, 516-519 (2012)
[26] Lai, Y. M.; Wu, H.; Wu, Z. W.; Liu, S.; Den, X., Analytical viscoelastic solution for frost force in cold-region tunnels, Cold Regions Science and Technology, 31, 3, 227-234 (2000) · doi:10.1016/S0165-232X(00)00017-3
[27] Weng, J. J., Special Construction Engineering of Mine Shaft and Drift (1991), Beijing, China: Coal Industry Press, Beijing, China
[28] Wang, D.; Bienen, B.; Nazem, M.; Tian, Y.; Zheng, J.; Pucker, T.; Randolph, M. F., Large deformation finite element analyses in geotechnical engineering, Computers & Geosciences, 65, 104-114 (2015) · doi:10.1016/j.compgeo.2014.12.005
[29] Kim, Y. S.; Kang, J.-M.; Lee, J.; Hong, S.-S.; Kim, K.-J., Finite element modeling and analysis for artificial ground freezing in egress shafts, KSCE Journal of Civil Engineering, 16, 6, 925-932 (2012) · doi:10.1007/s12205-012-1252-y
[30] Wachsmuth, G.; Lätzer, M.; Leidich, E., Analytical computation of multiple interference fits under elasto-plastic deformations, Zamm Journal of Applied Mathematics & Mechanics, 94, 12, 1058-1064 (2014) · Zbl 1303.74015 · doi:10.1002/zamm.201300041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.