×

A decomposition approach for stochastic shortest-path network interdiction with goal threshold. (English) Zbl 1418.90068

Summary: Shortest-path network interdiction, where a defender strategically allocates interdiction resource on the arcs or nodes in a network and an attacker traverses the capacitated network along a shortest \(s\)-\(t\) path from a source to a terminus, is an important research problem with potential real-world impact. In this paper, based on game-theoretic methodologies, we consider a novel stochastic extension of the shortest-path network interdiction problem with goal threshold, abbreviated as SSPIT. The attacker attempts to minimize the length of the shortest path, while the defender attempts to force it to exceed a specific threshold with the least resource consumption. In our model, threshold constraint is introduced as a trade-off between utility maximization and resource consumption, and stochastic cases with some known probability \(p\) of successful interdiction are considered. Existing algorithms do not perform well when dealing with threshold and stochastic constraints. To address the NP-hard problem, SSPIT-D, a decomposition approach based on Benders decomposition, was adopted. To optimize the master problem and subproblem iteration, an efficient dual subgraph interdiction algorithm SSPIT-S and a local research based better-response algorithm SSPIT-DL were designed, adding to the SSPIT-D. Numerical experiments on networks of different sizes and attributes were used to illustrate and validate the decomposition approach. The results showed that the dual subgraph and better-response procedure can significantly improve the efficiency and scalability of the decomposition algorithm. In addition, the improved enhancement algorithms are less sensitive and robust to parameters. Furthermore, the application in a real-world road network demonstrates the scalability of our decomposition approach.

MSC:

90B15 Stochastic network models in operations research

Software:

Robotics; YALMIP

References:

[1] Washburn, A.; Network Interdiction; Two-Person Zero-Sum Games: Berlin, Germany 2014; ,123-141.
[2] Zhang, J.; Zhuang, J.; Behlendorf, B.; Stochastic shortest path network interdiction with a case study of Arizona-Mexico border; Reliab. Eng. Syst. Saf.: 2018; Volume 179 ,62-73.
[3] Salmeron, J.; Wood, K.; Baldick, R.; Worst-case interdiction analysis of large-scale electric power grids; IEEE Trans. Power Syst.: 2009; Volume 24 ,96-104.
[4] Chen, W.; Wang, Y.; Yang, S.; Efficient influence maximization in social networks; Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining: ; ,199-208.
[5] Smith, J.C.; Prince, M.; Geunes, J.; Modern Network Interdiction Problems and Algorithms; Handbook of Combinatorial Optimization: Berlin, Germany 2013; ,1949-1987.
[6] Collado, R.A.; Papp, D.; ; Network Interdiction-Models, Applications, Unexplored Directions: New Brunswick, NJ, USA 2012; .
[7] Smith, J.C.; Lim, C.; Algorithms for network interdiction and fortification games; Pareto Optimality, Game Theory and Equilibria: Berlin, Germany 2008; ,609-644. · Zbl 1152.91385
[8] Von Stackelberg, H.; ; The Theory of the Market Economy: Oxford, UK 1952; .
[9] Khachiyan, L.; Boros, E.; Borys, K.; Elbassioni, K.; Gurvich, V.; Rudolf, G.; Zhao, J.; On short paths interdiction problems: Total and node-wise limited interdiction; Theory Comput. Syst.: 2008; Volume 43 ,204-233. · Zbl 1148.68036
[10] Wood, R.K.; Deterministic network interdiction; Math. Comput. Modell.: 1993; Volume 17 ,1-18. · Zbl 0800.90772
[11] Israeli, E.; Wood, R.K.; Shortest-path network interdiction; Networks: 2002; Volume 40 ,97-111. · Zbl 1027.90106
[12] Altner, D.S.; Ergun, Ö.; Uhan, N.A.; The maximum flow network interdiction problem: valid inequalities, integrality gaps, and approximability; Oper. Res. Lett.: 2010; Volume 38 ,33-38. · Zbl 1182.90014
[13] Jain, M.; Conitzer, V.; Tambe, M.; Security scheduling for real-world networks; Proceedings of the 2013 International Conference on Autonomous Agents and Multi-Agent Systems: ; ,215-222.
[14] Geoffrion, A.M.; Generalized benders decomposition; J. Optim. Theory Appl.: 1972; Volume 10 ,237-260. · Zbl 0229.90024
[15] Snyder, L.V.; Atan, Z.; Peng, P.; Rong, Y.; Schmitt, A.J.; Sinsoysal, B.; OR/MS models for supply chain disruptions: A review; IIE Trans.: 2016; Volume 48 ,89-109.
[16] Hausken, K.; Zhuang, J.; Defending against a stockpiling terrorist; Eng. Econ.: 2011; Volume 56 ,321-353.
[17] Scaparra, M.P.; Church, R.L.; A bilevel mixed-integer program for critical infrastructure protection planning; Comput. Oper. Res.: 2008; Volume 35 ,1905-1923. · Zbl 1139.90439
[18] Brown, G.G.; Carlyle, W.M.; Harney, R.C.; Skroch, E.M.; Wood, R.K.; Interdicting a nuclear-weapons project; Oper. Res.: 2009; Volume 57 ,866-877. · Zbl 1226.90142
[19] Lusby, R.M.; Larsen, J.; Bull, S.; A survey on robustness in railway planning; Eur. J. Oper. Res.: 2018; Volume 266 ,1-15. · Zbl 1403.90146
[20] Sundar, K.; Coffrin, C.; Nagarajan, H.; Bent, R.; Probabilistic Interdiction for Power Systems; arXiv: 2017; .
[21] Liu, D.; Toroporov, V.V.; Querin, O.M.; Barton, D.C.; Bilevel optimization of blended composite wing panels; J. Aircr.: 2011; Volume 48 ,107-118.
[22] Ahuja, R.K.; ; Network Flows: Theory, Algorithms, and Applications: Upper Saddle River, NJ, USA 2017; .
[23] Gutin, E.; Kuhn, D.; Wiesemann, W.; Interdiction games on Markovian PERT networks; Manag. Sci.: 2014; Volume 61 ,999-1017.
[24] Wei, X.; Zhu, C.; Xiao, K.; Yin, Q.; Zha, Y.; Shortest Path Network Interdiction with Goal Threshold; IEEE Access: 2018; Volume 6 ,29332-29343.
[25] Fulkerson, D.R.; Harding, G.C.; Maximizing the minimum source-sink path subject to a budget constraint; Math. Program.: 1977; Volume 13 ,116-118. · Zbl 0366.90115
[26] Cormican, K.J.; Morton, D.P.; Wood, R.K.; Stochastic network interdiction; Oper. Res.: 1998; Volume 46 ,184-197. · Zbl 0987.90516
[27] Pan, F.; Morton, D.P.; Minimizing a stochastic maximum-reliability path; Networks: 2008; Volume 52 ,111-119. · Zbl 1172.90345
[28] Gutfraind, A.; Hagberg, A.A.; Izraelevitz, D.; Pan, F.; Interdiction of a Markovian evader; arXiv: 2010; . · Zbl 1241.90108
[29] Johnson, M.P.; Gutfraind, A.; Ahmadizadeh, K.; Evader interdiction: algorithms, complexity and collateral damage; Ann. Oper. Res.: 2014; Volume 222 ,341-359. · Zbl 1303.90058
[30] Bertsimas, D.; Nasrabadi, E.; Orlin, J.B.; On the power of randomization in network interdiction; Oper. Res. Lett.: 2016; Volume 44 ,114-120. · Zbl 1408.91038
[31] Bertsimas, D.; Nasrabadi, E.; Stiller, S.; Robust and adaptive network flows; Oper. Res.: 2013; Volume 61 ,1218-1242. · Zbl 1291.90046
[32] Hao, M.; Zhuang, J.; Jin, S.; Robustness of Optimal Defensive Resource Allocations in the Face of Less Fully Rational Attacker; 2009; ,886-891.
[33] Matuschke, J.; McCormick, S.T.; Oriolo, G.; Peis, B.; Skutella, M.; Protection of flows under targeted attacks; Oper. Res. Lett.: 2017; Volume 45 ,53-59. · Zbl 1409.90042
[34] Bayrak, H.; Bailey, M.D.; Shortest path network interdiction with asymmetric information; Networks: 2008; Volume 52 ,133-140. · Zbl 1171.90345
[35] Yates, J.; Sanjeevi, S.; A length-based, multiple-resource formulation for shortest path network interdiction problems in the transportation sector; Int. J. Critical Infrastruct. Prot.: 2013; Volume 6 ,107-119.
[36] Pardalos, P.M.; Migdalas, A.; Pitsoulis, L.; ; Pareto Optimality, Game Theory and Equilibria: Berlin, Germany 2008; Volume Volume 17 . · Zbl 1143.91004
[37] Rocco S, C.M.; Ramirez-Marquezb, J.E.; A bi-objective approach for shortest-path network interdiction; Comput. Ind. Eng.: 2010; Volume 59 ,232-240.
[38] Xiao, K.; Zhu, C.; Zhang, W.; Wei, X.; Hu, S.; Stackelberg network interdiction game: nodal model and algorithm; Proceedings of the 2014 5th International Conference on Game Theory for Networks (GAMENETS): ; ,1-5.
[39] Washburn, A.; Wood, K.; Two-person zero-sum games for network interdiction; Oper. Res.: 1995; Volume 43 ,243-251. · Zbl 0832.90124
[40] Zhang, Y.; An, B.; Tran-Thanh, L.; Wang, Z.; Gan, J.; Jennings, N.R.; Optimal escape interdiction on transportation networks; Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI): ; .
[41] Jain, M.; Korzhyk, D.; Vaněk, O.; Conitzer, V.; Pěchouček, M.; Tambe, M.; A double oracle algorithm for zero-sum security games on graphs; Proceedings of the The 10th International Conference on Autonomous Agents and Multiagent Systems: ; ,327-334.
[42] Rocco S, C.M.; Ramirez-Marquezb, J.E.; Deterministic network interdiction optimization via an evolutionary approach; Reliab. Eng. Syst. Saf.: 2009; Volume 94 ,568-576.
[43] Janjarassuk, U.; Nakrachata-Amon, T.; A simulated annealing algorithm to the stochastic network interdiction problem; Proceedings of the 2015 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM): ; ,230-233.
[44] Yates, J.; Lakshmanan, K.; A constrained binary knapsack approximation for shortest path network interdiction; Comput. Ind. Eng.: 2011; Volume 61 ,981-992.
[45] Leitmann, G.; On generalized Stackelberg strategies; J. Optim. Theory Appl.: 1978; Volume 26 ,637-643. · Zbl 0372.90137
[46] Erdos, P.; Renyi, A.; On random graphs I; Publ. Math. Debr.: 1959; Volume 6 ,290-297. · Zbl 0092.15705
[47] Kleinberg, J.M.; Navigation in a small world; Nature: 2000; Volume 406 ,845. · Zbl 1296.05181
[48] Bar-Gera, H.; Transportation Networks for Research Core Team; Transportation Network Test Problems: ; .
[49] Lofberg, J.; YALMIP: A toolbox for modeling and optimization in MATLAB; Proceedings of the 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508): ; ,284-289.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.