×

Analytical solution of time fractional Kawahara and modified Kawahara equations by homotopy analysis method. (English) Zbl 1499.65605

Summary: The article covers the implementation of the Homotopy Analysis method (HAM) in order to derive the general estimated analytical solutions for the non-linear time-fractional Kawahara and modified Kawahara equations. The Kawahara equations play a salient role in describing the formation of non-linear water waves in the long wavelength region.To illustrate the applicability and effectiveness of derivative with fractional order to portray the water waves in long wavelength regime,we have presented numerical outcomes graphically. The obtained observations have further fortified the idea that the suggested method offers a powerful and easy way to solve such non-linear system of equations. Besides, its main advantage is that it offers a series solution without any discretization or linearization. The numerical analysis illustrates that the surfaces obtained from the HAM technique are closely resemble the exact solution of the considered equations. Moreover, we have analyzed our solution based on the degree enhancement of time intervals so as to observe the dynamics of our solution with the respective time variations. The numerical solutions converge to the exact solution of the Kawahara equations using convergence analysis, validating the significance of our suggested method.

MSC:

65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
35R11 Fractional partial differential equations
Full Text: DOI

References:

[1] Arqub, OA; Shawagfeh, N., Application of reproducing kernel algorithm for solving Dirichlet time-fractional diffusion-Gordon types equations in porous media, J. Porous Media, 22, 411 (2019) · doi:10.1615/JPorMedia.2019028970
[2] Arqub, OA; Al-Smadi, M., Numerical solutions of Riesz fractional diffusion and advection-dispersion equations in porous media using iterative reproducing kernel algorithm, J. Porous Media, 23, 8, 783 (2020) · doi:10.1615/JPorMedia.2020025011
[3] Djennadi, S.; Shawagfeh, N.; Arqub, OA, A fractional Tikhonov regularization method for an inverse backward and source problems in the time-space fractional diffusion equations, Chaos Solitons Fractals, 150, 111127 (2021) · Zbl 1498.35571 · doi:10.1016/j.chaos.2021.111127
[4] Arqub, OA; Hayat, T.; Alhodaly, M., Reproducing kernel Hilbert pointwise numerical solvability of fractional Sine-Gordon model in time-dependent variable with Dirichlet condition, Phys. Scr., 96, 10, 104005 (2021) · doi:10.1088/1402-4896/ac0c58
[5] Ali, A.; Gul, Z.; Khan, WA; Ahmad, S.; Zeb, S., Investigation of fractional order sine-Gordon equation using Laplace Adomian decomposition method, Fractals, 29, 5, 2150121 (2021) · Zbl 1482.35240 · doi:10.1142/S0218348X21501218
[6] Saifullah, S.; Ali, A.; Irfan, M.; Shah, K., Time-fractional Klein-Gordon equation with solitary/shock waves solutions, Math. Prob. Eng. (2021) · doi:10.1155/2021/6858592
[7] Rahman, F.; Ali, A.; Saifullah, S., Analysis of time-fractional \(\phi^4\)-equation with singular and non-singular Kernels, Int. J. Appl. Comput. Math, 7, 5, 1-17 (2021) · Zbl 1485.35402 · doi:10.1007/s40819-021-01128-w
[8] Saifullah, S.; Ali, A.; Khan, ZA, Analysis of nonlinear time-fractional Klein-Gordon equation with power law kernel, AIMS Math., 7, 4, 5275-5290 (2022) · doi:10.3934/math.2022293
[9] Turkyilmazoglu, M., Nonlinear problems via a convergence accelerated decomposition method of Adomian, Comput. Model. Eng. Sci., 127, 1-22 (2021)
[10] Mustafa, T., Parametrized Adomian decomposition method with optimum convergence, ACM Trans. Model. Comput. Simul., 27, 4, 1-22 (2017) · Zbl 1475.00121 · doi:10.1145/3084543
[11] Turkyilmazoglu, M., Accelerating the convergence of Adomian decomposition method (ADM), J. Comput. Sci., 31, 51-59 (2019) · doi:10.1016/j.jocs.2018.12.014
[12] Cadou, J.-M., Moustaghfir, N., Mallil, E.H., Damil, N., Potier-Ferry, M.: Linear iterative solvers based on perturbation techniques. C. R. Acad. Sci. Ser. IIB Mech. 329(6), 457-462 (2001)
[13] Mallil, E.; Lahmam, H.; Damil, N.; Potier-Ferry, M., An iterative process based on Homotopy and perturbation techniques, Comput. Methods Appl. Mech. Eng., 190, 13-14, 1845-1858 (2000) · Zbl 1004.74079 · doi:10.1016/S0045-7825(00)00198-5
[14] Deniz, S.; Konuralp, A.; De la Sen, M., Optimal perturbation iteration method for solving fractional model of damped Burgers’ equation, Symmetry, 12, 6, 958 (2020) · doi:10.3390/sym12060958
[15] De la Sen, M., Deniz, S., Sözen, H.: A new efficient technique for solving modified Chua’s circuit model with a new fractional operator. Adv. Differ. Equ. (2021) · Zbl 1485.34032
[16] Deniz, S., Optimal perturbation iteration method for solving fractional FitzHugh-Nagumo equation, Chaos Solitons Fractals, 142, 2021, 110417 (2021) · Zbl 1496.35230 · doi:10.1016/j.chaos.2020.110417
[17] Srivastava, HM; Deniz, S.; Saad, KM, An efficient semi-analytical method for solving the generalized regularized long wave equations with a new fractional derivative operator, J. King Saud Univ. Sci., 33, 2, 101545 (2021) · doi:10.1016/j.jksus.2021.101345
[18] Agarwal, P.; Deniz, S.; Jain, S.; Alderremy, AA; Aly, S., A new analysis of a partial differential equation arising in biology and population genetics via semi analytical techniques, Physica A Stat. Mech. Appl., 542, 122769 (2020) · Zbl 07527087 · doi:10.1016/j.physa.2019.122769
[19] Adel, W.; Deniz, S., Approximate solution of the electrostatic nanocantilever model via optimal perturbation iteration method, Comput. Math. Methods (2021) · doi:10.1002/cmm4.1189
[20] Saad, KM; Deniz, S.; Baleanu, D., On a new modified fractional analysis of Nagumo equation, Int. J. Biomath., 12, 3 (2019) · Zbl 1421.35118 · doi:10.1142/S1793524519500347
[21] Khana, F., Sultana, M., Khalid, M.: Numerical solution of time fractional delay partial differential equations by perturbation iteration algorithm. Punjab Univ. J. Math. 53(8) (2021)
[22] Turkyilmazoglu, M., Equivalence of ratio and residual approaches in the Homotopy analysis method and some applications in nonlinear science and engineering, Comput. Model. Eng. Sci., 200, 63-81 (2019)
[23] He, J.-H., Latifizadeh, H.: A general numerical algorithm for nonlinear differential equations by the variational iteration method. Int. J. Numer. Methods Heat Fluid Flow (2020)
[24] Wazwaz, A-M, The variational iteration method for solving linear and nonlinear systems of PDEs, Comput. Math. Appl., 54, 7-8, 895-902 (2007) · Zbl 1145.35312 · doi:10.1016/j.camwa.2006.12.059
[25] Odibat, ZM, A study on the convergence of variational iteration method, Math. Comput. Model., 51, 9-10, 1181-1192 (2010) · Zbl 1198.65147 · doi:10.1016/j.mcm.2009.12.034
[26] Daftardar-Gejji, V.; Jafari, H., An iterative method for solving nonlinear functional equations, J. Math. Anal. Appl., 316, 2, 753-763 (2006) · Zbl 1087.65055 · doi:10.1016/j.jmaa.2005.05.009
[27] Kudryashov, NA, A note on new exact solutions for the Kawahara equation using exp-function method, J. Comput. Appl. Math., 234, 12, 3511-3512 (2010) · Zbl 1194.65119 · doi:10.1016/j.cam.2010.04.034
[28] Lu, J., Analytical approach to Kawahara equation using variational iteration method and Homotopy perturbation method, Topol. Methods Nonlinear Anal., 31, 2, 287-293 (2008) · Zbl 1152.35091
[29] Kawahara, T., Oscillatory solitary waves in dispersive media, J. Phys. Soc. Jpn., 33, 1, 260-264 (1972) · doi:10.1143/JPSJ.33.260
[30] Jabbari, A.; Kheiri, H., New exact traveling wave solutions for the Kawahara and modified Kawahara equations by using modified tanh-coth method, Acta Universitatis Apulensis, 23, 21-38 (2010) · Zbl 1265.35304
[31] Wazwaz, A-M, New solitary wave solutions to the modified Kawahara equation, Phys. Lett. A, 360, 4-5, 588-592 (2007) · Zbl 1236.35142 · doi:10.1016/j.physleta.2006.08.068
[32] Jin, L., Application of variational iteration method and homotopy perturbation method to the modified Kawahara equation, Math. Comput. Model., 49, 3-4, 573-578 (2009) · Zbl 1165.35444 · doi:10.1016/j.mcm.2008.06.017
[33] Kurulay, M., Approximate analytic solutions of the modified Kawahara equation with Homotopy analysis method, Adv. Differ. Equ., 2012, 1, 1-6 (2012) · Zbl 1291.30210 · doi:10.1186/1687-1847-2012-1
[34] Li C., Qian D., Chen Y.: On Riemann-Liouville and caputo derivatives. In: Discrete Dynamics in Nature and Society (2011) · Zbl 1213.26008
[35] Zhang, X.; Tang, B.; He, Y., Homotopy analysis method for higher-order fractional integro-differential equations, Comput. Math. Appl., 62, 8, 3194 (2011) · Zbl 1232.65120 · doi:10.1016/j.camwa.2011.08.032
[36] Wang, Q., Homotopy perturbation method for fractional KdV-Burgers equation, Chaos Solitons Fractals, 35, 5, 843-850 (2008) · Zbl 1132.65118 · doi:10.1016/j.chaos.2006.05.074
[37] Sirendaoreji: New exact traveling wave solutions for the Kawahara and modified Kawahara equations. Chaos Solitons Fractals, 19, 147-150 (2004) · Zbl 1068.35141
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.