×

Numerical investigation of particle deflection in tilted-angle standing surface acoustic wave microfluidic devices. (English) Zbl 1481.76192

Summary: The tilted-angle standing surface acoustic wave (taSSAW) microfluidic device has become a powerful tool for biosample separation due to its biocompatibility and non-contact, label-free, and high-efficiency nature. Studying and modeling particle deflection in a microfluid environment containing a taSSAW field is essential in the design of robust taSSAW-based microfluidic devices. Here, we present a numerical model taking into consideration fluid viscous drag force and the acoustic radiation force induced by scattering of acoustic waves for the study of particle deflection. The reliability of the model is validated by comparing our predictions with data from existing literature. In order to support our prediction experimentally, we fabricated a taSSAW microfluidic chip using \(128 °\; \mathrm{YX}\; \mathrm{LiNbO}_3\), and the deflection results for 3- and 7-\micro m polystyrene microspheres concur with the numerical estimation. The effects on particle deflection by parameters such as pre-focusing, pre-focusing width, average flow velocity, acoustic pressure amplitude, tilted angle, and surface acoustic wave frequency on particle deflection are then analyzed. This model could be used to optimize the design and better understand the mechanism of taSSAW microfluidic devices.

MSC:

76Q05 Hydro- and aero-acoustics
92C35 Physiological flow
Full Text: DOI

References:

[1] Sajeesh, P.; Sen, A. K., Particle separation and sorting in microfluidic devices: a review, Microfluid. Nanofluidics, 17, 1-52 (2014)
[2] Witek, M. A.; Freed, I. M.; Soper, S. A., Cell separations and sorting, Anal. Chem., 92, 105-131 (2020)
[3] Nasiri, R.; Shamloo, A.; Ahadian, S.; Amirifar, L.; Akbari, J.; Goudie, M. J.; Lee, K. J.; Ashammakhi, N.; Dokmeci, M. R.; Di Carlo, D.; Khademhosseini, A., Microfluidic-based approaches in targeted cell/particle separation based on physical properties: fundamentals and applications, Small, 2000171, 1-27 (2020)
[4] Chen, J.; Li, J.; Sun, Y., Microfluidic approaches for cancer cell detection, characterization, and separation, Lab Chip, 12, 1753-1767 (2012)
[5] Zhao, Z.; Yang, Y.; Zeng, Y.; He, M., A microfluidic ExoSearch chip for multiplexed exosome detection towards blood-based ovarian cancer diagnosis, Lab Chip, 16, 489-496 (2016)
[6] Contreras-Naranjo, J. C.; Wu, H. J.; Ugaz, V. M., Microfluidics for exosome isolation and analysis: enabling liquid biopsy for personalized medicine, Lab Chip, 17, 3558-3577 (2017)
[7] Ozcelik, A.; Rufo, J.; Guo, F.; Gu, Y.; Li, P.; Lata, J.; Huang, T. J., Acoustic tweezers for the life sciences, Nat. Methods, 15, 1021-1028 (2018)
[8] Destgeer, G.; Sung, H. J., Recent advances in microfluidic actuation and micro-object manipulation via surface acoustic waves, Lab Chip, 15, 2722-2738 (2015)
[9] Yang, R.; Hou, H.; Wang, Y.; Fu, L., Micro-magnetofluidics in microfluidic systems: a review, Sensors Actuators B Chem, 224, 1-15 (2016)
[10] Hejazian, M.; Li, W.; Nguyen, N.-T., Lab on a chip for continuous-flow magnetic cell separation, Lab Chip, 15, 959-970 (2015)
[11] Çetin, B.; Li, D., Dielectrophoresis in microfluidics technology, Electrophoresis, 32, 2410-2427 (2011)
[12] Wang, X.; Chen, S.; Kong, M.; Wang, Z.; Costa, K. D.; Li, R. A.; Sun, D., Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies, Lab Chip, 11, 3656-3662 (2011)
[13] Zhang, H.; Liu, K. K., Optical tweezers for single cells, J. R. Soc. Interface, 5, 671-690 (2008)
[14] Dauson, E. R.; Gregory, K. B.; Oppenheim, I. J.; Healy, G. P.; Greve, D. W., Particle separation using bulk acoustic waves in a tilted angle microfluidic channel, (2015 IEEE Int. Ultrason. Symp. IUS 2015 (2015)), 3-6
[15] Ding, X.; Li, P.; Lin, S.-C. S.; Stratton, Z. S.; Nama, N.; Guo, F.; Slotcavage, D.; Mao, X.; Shi, J.; Costanzo, F.; Huang, T. J., Surface acoustic wave microfluidics, Lab Chip, 13, 3626 (2013)
[16] Yeo, L. Y.; Friend, J. R., Surface acoustic wave microfluidics, Annu. Rev. Fluid Mech., 46, 379-406 (2014) · Zbl 1297.76147
[17] Shi, J.; Huang, H.; Stratton, Z.; Huang, Y.; Huang, T. J., Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW), Lab Chip, 9, 3354-3359 (2009)
[18] Ai, Y.; Sanders, C. K.; Marrone, B. L., Separation of escherichia coli bacteria from peripheral blood mononuclear cells using standing surface acoustic waves, Anal. Chem., 85, 9126-9134 (2013)
[19] Nam, J.; Lim, H.; Kim, C.; Yoon Kang, J.; Shin, S., Density-dependent separation of encapsulated cells in a microfluidic channel by using a standing surface acoustic wave, Biomicrofluidics, 6 (2012)
[20] Wu, M.; Chen, C.; Wang, Z.; Bachman, H.; Ouyang, Y.; Huang, P.-H.; Sadovsky, Y.; Huang, T. J., Separating extracellular vesicles and lipoproteins via acoustofluidics, Lab Chip, 19, 1174-1182 (2019)
[21] Lin, S. C.S.; Mao, X.; Huang, T. J., Surface acoustic wave (SAW) acoustophoresis: now and beyond, Lab Chip, 12, 2766-2770 (2012)
[22] Riaud, A.; Wang, W.; Thai, A. L.P.; Taly, V., Mechanical Characterization of cells and microspheres sorted by acoustophoresis with in-line resistive pulse sensing, Phys. Rev. Appl., 13, 1 (2020)
[23] Ding, X.; Peng, Z.; Lin, S. C.S.; Geri, M.; Li, S.; Li, P.; Chen, Y.; Dao, M.; Suresh, S.; Huang, T. J., Cell separation using tilted-angle standing surface acoustic waves, Proc. Natl. Acad. Sci. U. S. A., 111, 12992-12997 (2014)
[24] Li, P.; Mao, Z.; Peng, Z.; Zhou, L.; Chen, Y.; Huang, P.-H.; Truica, C. I.; Drabick, J. J.; El-Deiry, W. S.; Dao, M.; Suresh, S.; Huang, T. J., Acoustic separation of circulating tumor cells, Proc. Natl. Acad. Sci., 112, 4970-4975 (2015)
[25] Wu, M.; Mao, Z.; Chen, K.; Bachman, H.; Chen, Y.; Rufo, J.; Ren, L.; Li, P.; Wang, L.; Huang, T. J., Acoustic separation of nanoparticles in continuous flow, Adv. Funct. Mater., 27 (2017)
[26] Li, S.; Ma, F.; Bachman, H.; Cameron, C. E.; Zeng, X.; Huang, T. J., Acoustofluidic bacteria separation, J. Micromech. Microeng., 27, 0-11 (2017)
[27] Liu, G.; He, F.; Li, X.; Zhao, H.; Zhang, Y.; Li, Z.; Yang, Z., Multi-level separation of particles using acoustic radiation force and hydraulic force in a microfluidic chip, Microfluid. Nanofluidics, 23, 1-10 (2019)
[28] Liu, G.; He, F.; Li, Y.; Zhao, H.; Li, X.; Tang, H.; Li, Z.; Yang, Z.; Zhang, Y., Effects of two surface acoustic wave sorting chips on particles multi-level sorting, Biomed. Microdevices, 21 (2019)
[29] Li, S.; Ren, L.; Huang, P.-H.; Yao, X.; Cuento, R. A.; McCoy, J. P.; Cameron, C. E.; Levine, S. J.; Huang, T. J., Acoustofluidic transfer of inflammatory cells from human sputum samples, Anal. Chem., 88, 5655-5661 (2016)
[30] Ayan, B.; Ozcelik, A.; Bachman, H.; Tang, S. Y.; Xie, Y.; Wu, M.; Li, P.; Huang, T. J., Acoustofluidic coating of particles and cells, Lab Chip, 16, 4366-4372 (2016)
[31] Wu, M.; Ouyang, Y.; Wang, Z.; Zhang, R.; Huang, P. H.; Chen, C.; Li, H.; Li, P.; Quinn, D.; Dao, M.; Suresh, S.; Sadovsky, Y.; Huang, T. J., Isolation of exosomes from whole blood by integrating acoustics and microfluidics, Proc. Natl. Acad. Sci. U. S. A., 114, 10584-10589 (2017)
[32] Wang, Z.; Li, F.; Rufo, J.; Chen, C.; Yang, S.; Li, L.; Zhang, J.; Cheng, J.; Kim, Y.; Wu, M.; Abemayor, E.; Tu, M.; Chia, D.; Spruce, R.; Batis, N.; Mehanna, H.; Wong, D. T.W.; Huang, T. J., Acoustofluidic salivary exosome isolation: a liquid biopsy compatible approach for human papillomavirus-associated oropharyngeal cancer detection, J. Mol. Diagnostics, 22, 50-59 (2020)
[33] Muller, P. B.; Barnkob, R.; Jensen, M. J.H.; Bruus, H., A numerical study of microparticle acoustophoresis driven by acoustic radiation forces and streaming-induced drag forces, Lab Chip, 12, 4617-4627 (2012)
[34] Hahn, P.; Leibacher, I.; Baasch, T.; Dual, J., Numerical simulation of acoustofluidic manipulation by radiation forces and acoustic streaming for complex particles, Lab Chip, 15, 4302-4313 (2015)
[35] Nama, N.; Barnkob, R.; Mao, Z.; Kähler, C. J.; Costanzo, F.; Huang, T. J., Numerical study of acoustophoretic motion of particles in a PDMS microchannel driven by surface acoustic waves, Lab Chip, 15, 2700-2709 (2015)
[36] Guo, J.; Kang, Y.; Ai, Y., Radiation dominated acoustophoresis driven by surface acoustic waves, J. Colloid Interface Sci., 455, 203-211 (2015)
[37] Shamloo, A.; Boodaghi, M., Design and simulation of a microfluidic device for acoustic cell separation, Ultrasonics, 84, 234-243 (2018)
[38] Shamloo, A.; Parast, F. Y., Simulation of blood particle separation in a trapezoidal microfluidic device by acoustic force, IEEE Trans. Electron Devices, 66, 1495-1503 (2019)
[39] Lei, J.; Cheng, F.; Li, K.; Guo, Z., Numerical simulation of continuous separation of microparticles in two-stage acousto-microfluidic systems, Appl. Math. Model., 83, 342-356 (2020) · Zbl 1481.76190
[40] Wang, W.; Riaud, A., Separation of particles and bio-samples by tilted-angle standing surface acoustic waves: A theoretical analysis, ArXiv, 37-43 (2019)
[41] Liu, Z.; Xu, G.; Ni, Z.; Chen, X.; Guo, X.; Tu, J.; Zhang, D., Theory of acoustophoresis in counterpropagating surface acoustic wave fields for particle separation, Phys. Rev. E, 103, 1-13 (2021)
[42] Zhao, S.; Wu, M.; Yang, S.; Wu, Y.; Gu, Y.; Chen, C.; Ye, J.; Xie, Z.; Tian, Z.; Bachman, H.; Huang, P. H.; Xia, J.; Zhang, P.; Zhang, H.; Huang, T. J., A disposable acoustofluidic chip for nano/microparticle separation using unidirectional acoustic transducers, Lab Chip, 20, 1298-1308 (2020)
[43] Chitale, K. C.; Presz, W.; Ross-Johnsrud, B. P.; Hyman, M.; Lamontagne, M.; Lipkens, B., Particle manipulation using macroscale angled ultrasonic standing waves, Proc. Meet. Acoust., 30 (2017)
[44] Chen, C.; Zhang, S. P.; Mao, Z.; Nama, N.; Gu, Y.; Huang, P.-H.; Jing, Y.; Guo, X.; Costanzo, F.; Huang, T. J., Three-dimensional numerical simulation and experimental investigation of boundary-driven streaming in surface acoustic wave microfluidics, Lab Chip, 18, 3645-3654 (2018)
[45] Ni, Z.; Yin, C.; Xu, G.; Xie, L.; Huang, J.; Liu, S.; Tu, J.; Guo, X.; Zhang, D., Modelling of SAW-PDMS acoustofluidics: physical fields and particle motions influenced by different descriptions of the PDMS domain, Lab Chip, 19, 2728-2740 (2019)
[46] Ding, X.; Lin, S. C.S.; Lapsley, M. I.; Li, S.; Guo, X.; Chan, C. Y.; Chiang, I. K.; Wang, L.; McCoy, J. P.; Huang, T. J., Standing surface acoustic wave (SSAW) based multichannel cell sorting, Lab Chip, 12, 4228-4231 (2012)
[47] Wang, K.; Zhou, W.; Lin, Z.; Cai, F.; Li, F.; Wu, J.; Meng, L.; Niu, L.; Zheng, H., Sorting of tumour cells in a microfluidic device by multi-stage surface acoustic waves, Sens. Actuators B Chem., 258, 1174-1183 (2018)
[48] Barnkob, R.; Augustsson, P.; Laurell, T.; Bruus, H., Acoustic radiation- and streaming-induced microparticle velocities determined by microparticle image velocimetry in an ultrasound symmetry plane, Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 86, 1-11 (2012)
[49] Barnkob, R.; Nama, N.; Ren, L.; Huang, T. J.; Costanzo, F.; Kähler, C. J., Acoustically driven fluid and particle motion in confined and leaky systems, Phys. Rev. Appl., 9, 14027 (2018)
[50] Lei, J.; Cheng, F.; Guo, Z., Standard and inverse transducer-plane streaming patterns in resonant acoustofluidic devices: experiments and simulations, Appl. Math. Model., 77, 456-468 (2020) · Zbl 1443.76203
[51] Wu, M.; Ozcelik, A.; Rufo, J.; Wang, Z.; Fang, R.; Huang, T. Jun, Acoustofluidic separation of cells and particles, Microsystems Nanoeng, 5 (2019)
[52] Bruus, H., Theoretical microfluidics, Choice Rev. Online, 45, 45-5602 (2008)
[53] Amini, H.; Lee, W.; Di Carlo, D., Inertial microfluidic physics, Lab Chip, 14, 2739-2761 (2014)
[54] Online, R.; Zhang, J.; Yan, S.; Yuan, D.; Alici, G.; Nguyen, N.-T.; Zhang, J.; Yan, S.; Yuan, D.; Nguyen, G.; Warkiani, E.; Li, M.; Li, W.; Warkiani, M. E., Fundamentals and applications of inertial microfluidics: a review, Lab Chip, 16, 10-34 (2016)
[55] Weser, R.; Winkler, A.; Weihnacht, M.; Menzel, S.; Schmidt, H., The complexity of surface acoustic wave fields used for microfluidic applications, Ultrasonics, 106, Article 106160 pp. (2020)
[56] Mutafopulos, K.; Spink, P.; Lofstrom, C. D.; Lu, P. J.; Lu, H.; Sharpe, J. C.; Franke, T.; Weitz, D. A., Traveling surface acoustic wave (TSAW) microfluidic fluorescence activated cell sorter (μFACS), Lab Chip, 19, 2435-2443 (2019)
[57] li, P.; Liang, M.; Lu, X.; Chow, J. J.M.; Ramachandra, C.; Ai, Y., Sheathless Acoustic fluorescence activated cell sorting (aFACS) with high cell viability, Anal. Chem. (2019), acs.analchem.9b03021
[58] Leibacher, I.; Schoendube, J.; Dual, J.; Zengerle, R.; Koltay, P., Enhanced single-cell printing by acoustophoretic cell focusing, Biomicrofluidics, 9, 1-11 (2015)
[59] Dziubinski, M., Hydrodynamic focusing in microfluidic devices, Adv. Microfluid. (2012)
[60] Das, P. K.; Snider, A. D.; Bhethanabotla, V. R., Acoustothermal heating in surface acoustic wave driven microchannel flow, Phys. Fluids, 31 (2019)
[61] Karlsson, J. M.; Gazin, M.; Laakso, S.; Haraldsson, T.; Malhotra-Kumar, S.; Mäki, M.; Goossens, H.; Van Der Wijngaart, W., Active liquid degassing in microfluidic systems, Lab Chip, 13, 4366-4373 (2013)
[62] Mo, J.; Raizen, M. G., Highly resolved Brownian motion in space and in time, Annu. Rev. Fluid Mech., 51, 403-428 (2019) · Zbl 1412.76006
[63] Vere, A. W., Mechanical twinning and crack nucleation in lithium niobate, J. Mater. Sci., 3, 617-621 (1968)
[64] Sehgal, P.; Kirby, B. J., Separation of 300 and 100 nm particles in Fabry-Perot acoustofluidic resonators, Anal. Chem., 89, 12192-12200 (2017)
[65] Wu, M.; Huang, P. H.; Zhang, R.; Mao, Z.; Chen, C.; Kemeny, G.; Li, P.; Lee, A. V.; Gyanchandani, R.; Armstrong, A. J.; Dao, M.; Suresh, S.; Huang, T. J., Circulating tumor cell phenotyping via high-throughput acoustic separation, Small, 14, 1-10 (2018)
[66] Yang, F.; Liao, X.; Tian, Y.; Li, G., Exosome separation using microfluidic systems: size-based, immunoaffinity-based and dynamic methodologies, Biotechnol. J., 12, 1-9 (2017)
[67] Li, S.; Ding, X.; Mao, Z.; Chen, Y.; Nama, N.; Guo, F.; Li, P.; Wang, L.; Cameron, C. E.; Huang, T. J., Standing surface acoustic wave (SSAW)-based cell washing, Lab Chip, 15, 331-338 (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.