×

Influence of multiple time delays on bifurcation of fractional-order neural networks. (English) Zbl 1428.34111

Summary: In this article, on the basis of predecessors works, we will propose a new fractional-order neural network model with multiple delays. Letting two different delays be bifurcation parameters and analyzing the corresponding characteristic equations of considered model, we will establish a set of new sufficient criteria to guarantee the stability and the appearance of Hopf bifurcation of fractional-order network model with multiple delays. The impact of two different delays on the stability behavior and the emergence of Hopf bifurcation of involved network model is revealed. The influence of the fractional order on the stability and Hopf bifurcation of involved model is also displayed. To check the correctness of analytical results, we perform programmer simulations with software. A conclusion is drawn in the end. The analysis results in this article are innovative and have important theoretical significance in designing neural networks.

MSC:

34K20 Stability theory of functional-differential equations
34K37 Functional-differential equations with fractional derivatives
34C23 Bifurcation theory for ordinary differential equations
92B20 Neural networks for/in biological studies, artificial life and related topics
34K18 Bifurcation theory of functional-differential equations
Full Text: DOI

References:

[1] Liao, X. F.; Wong, K. W.; Wu, Z. F., Asymptotic stability criteria for a two-neuron network with different time delays, IEEE Trans. Neural Netw., 14, 1, 222-227 (2003)
[2] Li, S. W.; Liao, X. F.; Li, C. G., New asymptotic stability criteria for a two-neuron network with different time delays, IEEE Trans. Circuits Syst. Part II Express Briefs, 53, 8, 682-686 (2006)
[3] Tran, D. T.; Iosifidis, A.; Gabbouj, M., Improving efficiency in convolutional neural networks with multilinear filters, Neural Netw., 105, 328-339 (2018)
[4] Kobayashi, M., Twin-multistate commutative quaternion Hopfield neural networks, Neurocomputing, 320, 150-156 (2018)
[5] Cheng, Z. S.; Xie, K. H.; Wang, T. S.; Cao, J. D., Stability and Hopf bifurcation of three-triangle neural networks with delays, Neurocomputing, 322, 206-215 (2018)
[6] Ali, M. S.; Yogambigai, J.; Saravanan, S.; Elakkia, S., Stochastic stability of neutral-type Markovian-jumping BAM neural networks with time varying delays, J. Comput. Appl. Math., 349, 142-156 (2019) · Zbl 1406.34095
[7] Li, H. F.; Li, C. D.; Huang, T. W.; Zhang, W. L., Fixed-time stabilization of impulsive Cohen-Grossberg BAM neural networks, Neural Netw., 98, 203-211 (2018) · Zbl 1441.93204
[8] Lu, B. L.; Jiang, H. J.; Hu, C.; Abdurahman, A., Pinning impulsive stabilization for BAM reaction-diffusion neural networks with mixed delays, J. Frankl. Inst., 355, 17, 8802-8829 (2019) · Zbl 1402.93191
[9] Yang, W. G.; Yu, W. W.; Cao, J. D.; Alsaadi, F. E.; Hayat, T., Almost automorphic solution for neutral type high-order Hopfield BAM neural networks with time-varying leakage delays on time scales, Neurocomputing, 267, 241-260 (2017)
[10] Li, Y. K.; Qin, J. L., Existence and global exponential stability of periodic solutions for quaternion-valued cellular neural networks with time-varying delays, Neurocomputing, 292, 91-103 (2018)
[11] Zhang, Z. Q.; Zheng, T., Global asymptotic stability of periodic solutions for delayed complex-valued Cohen-Grossberg neural networks by combining coincidence degree theory with LMI method, Neurocomputing, 289, 220-230 (2018)
[12] Lv, X. X.; Li, X. D., Delay-dependent dissipativity of neural networks with mixed non-differentiable interval delays, Neurocomputing, 267, 85-94 (2017)
[13] Li, X. D.; Song, S. J., Research on synchronization of chaotic delayed neural networks with stochastic perturbation using impulsive control method, Commun. Nonlinear Sci. Numer. Simul., 19, 10, 3892-3900 (2014) · Zbl 1470.34163
[14] Li, M. M.; Wang, J. R., Exploring delayed Mittag-Leffler type matrix functions to study finite time stability of fractional delay differential equations, Appl. Math. Comput., 324, 254-265 (2018) · Zbl 1426.34110
[15] Wang, Y.; Jiang, J. Q., Existence and nonexistence of positive solutions for the fractional coupled system involving generalized P-Laplacian, Adv. Differ. Equ., 337, 1-19 (2017) · Zbl 1444.34019
[16] Wang, Y. Q.; Liu, L. S., Positive solutions for a class of fractional 3-point boundary value problems at resonance, Adv. Differ. Equ., 7, 1-13 (2017) · Zbl 1422.34065
[17] Zuo, M. Y.; Hao, X. A.; Liu, L. S.; Cui, Y. J., Existence results for impulsive fractional integro-differential equation of mixed type with constant coefficient and antiperiodic boundary conditions, Bound. Value Probl., 161, 15 (2017) · Zbl 1483.34112
[18] Zhang, X. G.; Liu, L. S.; Wu, Y. H.; Wiwatanapataphee, B., Nontrivial solutions for a fractional advection dispersion equation in anomalous diffusion, Appl. Math. Lett., 66, 1-8 (2017) · Zbl 1364.35429
[19] Zhu, B.; Liu, L. S.; Wu, Y. H., Existence and uniqueness of global mild solutions for a class of nonlinear fractional reaction-diffusion equations with delay, Comput. Math. Appl. (2016)
[20] Feng, Q. H.; Meng, F. W., Traveling wave solutions for fractional partial differential equations arising in mathematical physics by an improved fractional Jacobi elliptic equation method, Math. Methods Appl. Sci., 40, 10, 3676-3686 (2017) · Zbl 1370.35073
[21] Shen, T. L.; Xin, J.; Huang, J. H., Time-space fractional stochastic Ginzburg-Landau equation driven by gaussian white noise, Stoch. Anal. Appl., 36, 1, 103-113 (2018) · Zbl 1383.37064
[22] Zhang, H.; Ye, M. L.; Ye, R. Y.; Cao, J. D., Synchronization stability of Riemann-Liouville fractional delay-coupled complex neural networks, Phys. A Stat. Mech. Appl., 508, 155-165 (2018) · Zbl 1514.34126
[23] Liu, S. X.; Yu, Y. G.; Zhang, S.; Zhang, Y. T., Robust stability of fractional-order memristor-based Hopfield neural networks with parameter disturbances, Phys. A Stat. Mech. Appl., 509, 845-854 (2018) · Zbl 1514.93050
[24] Xu, C. J.; Li, P. L., On finite-time stability for fractional-order neural networks with proportional delays, Neural Process. Lett. (2018)
[25] Ye, R. Y.; Liu, X. S.; Zhang, H.; Cao, J. D., Global Mittag-Leffler synchronization for fractional-order BAM neural networks with impulses and multiple variable delays via delayed-feedback control strategy, Neural Process. Lett., 49, 1, 1-18 (2019)
[26] Wei, H. Z.; Li, R. X.; Chen, C. R.; Tu, Z. W., Stability analysis of fractional order complex-valued memristive neural networks with time delays, Neural Process. Lett., 45, 2, 379-399 (2017)
[27] Wan, P.; Jian, J. G., Global Mittag-Leffler boundedness for fractional-order complex-valued Cohen-Grossberg neural networks, Neural Process. Lett., 49, 1, 121-139 (2019)
[28] Thuan, M. V.; Huong, D. C.; Hong, D. T., New results on robust finite-time passivity for fractional-order neural networks with uncertainties, Neural Process. Lett. (2018)
[29] Aghababa, M. P., Fractional-neuro-optimizer: a neural-network-based optimization method, Neural Process. Lett., 40, 2, 169-189 (2014)
[30] Yang, X. J.; Li, C. D.; Song, Q. K.; Chen, J. Y.; Huang, J. J., Global Mittag-Leffler stability and synchronization analysis of fractional-order quaternion-valued neural networks with linear threshold neurons, Neural Netw., 105, 88-103 (2018) · Zbl 1441.93209
[31] Liu, H.; Li, S. G.; Wang, H. X.; Sun, Y. G., Adaptive fuzzy control for a class of unknown fractional-order neural networks subject to input nonlinearities and dead-zones, Inf. Sci., 454-455, 30-45 (2018) · Zbl 1448.93181
[32] Wu, Z. B.; Li, J. D.; Huang, N. J., A new system of global fractional-order interval implicit projection neural networks, Neurocomputing, 282, 111-121 (2018)
[33] Gu, Y. J.; Yu, Y. G.; Wang, H., Projective synchronization for fractional-order memristor-based neural networks with time delays, Neural Comput. Appl. (2018)
[34] Rajivganthi, C.; Rihan, F. A.; Lakshmanan, S., Finite-time stability analysis for fractional-order Cohen-Grossberg BAM neural networks with time delays, Neural Comput. Appl., 29, 12, 1309-1320 (2018)
[35] Huang, C. D.; Cao, J. D., Impact of leakage delay on bifurcation in high-order fractional BAM neural networks, Neural Netw., 98, 223-235 (2018) · Zbl 1439.93004
[36] Deshpande, A. S.; Daftardar-Gejji, V.; Sukale, Y. V., On Hopf bifurcation in fractional dynamical systems, Chaos Solitons Fractals, 98, 189-198 (2017) · Zbl 1372.34122
[37] Hu, W.; Ding, D. W.; Zhang, Y. Q.; Wang, N.; Liang, D., Hopf bifurcation and chaos in a fractional order delayed memristor-based chaotic circuit system, Opt. Int. J. Light Electron Opt., 130, 189-200 (2017)
[38] Rajagopal, K.; Karthikeyan, A.; Srinivasan, A., Bifurcation and chaos in time delayed fractional order chaotic memfractor oscillator and its sliding mode synchronization with uncertainties, Chaos Solitons Fractals, 103, 347-356 (2017) · Zbl 1375.93062
[39] Huang, C. D., Multiple scales scheme for bifurcation in a delayed extended Van Der Pol oscillator, Phys. A Stat. Mech. Appl., 490, 643-652 (2018) · Zbl 1514.34121
[40] Huang, C. D.; Cao, J. D.; Xiao, M.; Alsaedi, A.; Hayat, T., Bifurcations in a delayed fractional complex-valued neural network, Appl. Math. Comput., 292, 210-227 (2017) · Zbl 1410.37074
[41] Xiao, M.; Jiang, G. P.; Zheng, W. X.; Yan, S. L.; Wan, Y. H.; Fan, C. X., Bifurcation control od a fractional-order Van Der Pol oscillator based on the state feedback, Asian J. Control, 17, 5, 1755-1766 (2015) · Zbl 1333.93120
[42] Huang, C. D.; Cao, J. D.; Xiao, M.; Alsaedi, A.; Hayat, T., Bifurcations in a delayed fractional complex-valued neural network, Appl. Math. Comput., 292, 210-227 (2017) · Zbl 1410.37074
[43] Podlubny, I., Fractional Differential Equations (1999), Academic Press: Academic Press New York · Zbl 0918.34010
[44] Matignon, D., Stability results for fractional differential equations with applications to control processing, Proceedings of the Computational Engineering in Systems and Application Multi-Conference, IMAC IEEE-SMC, 963-968 (1996)
[45] Deng, W. H.; Li, C. P.; Lü, J. H., Stability analysis of linear fractional differential system with multiple time delays, Nonlinear Dyn., 48, 4, 409-416 (2007) · Zbl 1185.34115
[46] Sun, Q. S.; Xiao, M.; Tao, B. B., Local bifurcation analysis of a fractional-order dynamic model of genetic regulatory networks with delays, Neural Process. Lett., 47, 3, 1285-1296 (2018)
[47] Wang, Z.; Wang, X. H.; Li, Y. X.; Huang, X., Stability and Hopf bifurcation of fractional-order complex-valued single neuron model with time delay, Int. J. Bifurc. Chaos, 27, 13, 1750209 (2017) · Zbl 1378.92012
[48] Li, L.; Wang, Z.; Li, Y. X.; Shen, H.; Lu, J. W., Hopf bifurcation analysis of a complex-valued neural network model with discrete and distributed delays, Appl. Math. Comput., 330, 152-169 (2018) · Zbl 1427.34098
[49] Wang, Z.; Li, L.; Li, Y. Y.; Cheng, Z. S., Stability and Hopf bifurcation of a three-neuron network with multiple discrete and distributed delays, Neural Process. Lett., 48, 3, 1481-1502 (2018)
[50] Wang, J.; Chen, M. S.; Shen, H.; Park, J. H.; Wu, Z. G., A Markov jump model approach to reliable event-triggered retarded dynamic output feedback \(H_∞\) control for networked systems, Nonlinear Anal. Hybrid Syst., 26, 137-150 (2017) · Zbl 1373.93218
[51] Wang, J.; Su, L.; Shen, H.; Wu, Z. G.; Park, J. H., Mixed \(H_∞\)/passive sampled-data synchronization control of complex dynamical networks with distributed coupling delay, J. Frankl. Inst., 354, 3, 1302-1320 (2017) · Zbl 1355.93113
[52] Wang, J.; Hu, X. H.; Wei, Y. L.; Wang, Z., Sampled-data synchronization of semi-Markov jump complex dynamical networks subject to generalized dissipativity property, Appl. Math. Comput., 346, 853-864 (2019) · Zbl 1429.93011
[53] Dai, M. C.; Xia, J. W.; Park, J. H.; Huang, X.; Shen, H., Asynchronous dissipative filtering for Markov jump discrete-time systems subject to randomly occurring distributed delays, J. Frankl. Inst., 356, 4, 2395-2420 (2019) · Zbl 1409.93067
[54] Wang, J.; Ru, T. T.; Xia, J. W.; Wei, Y. L.; Wang, Z., Finite-time synchronization for complex dynamic networks with semi-Markov switching topologies: an \(H_∞\) event-triggered control scheme, Appl. Math. Comput., 356, 1, 235-251 (2019) · Zbl 1428.93124
[55] Xing, M. P.; Shen, H.; Wang, Z., \(H_∞\) synchronization of semi-Markovian jump neural networks with randomly occurring time-varying delays, Complexity, 16 (2018) · Zbl 1405.93119
[56] Tang, X. H.; Chen, S. T., Ground state solutions of Nehari-Pohoz̆aev type for kirchhoff-type problems with general potentials, Calc. Var. Partial Differ. Equ., 56, 4, 1-25 (2017) · Zbl 1376.35056
[57] Chen, S. T.; Tang, X. H., Improved results for Klein-Gordon-maxwell systems with general nonlinearity, Discrete Contin. Dyn. Syst. A, 38, 5, 2333-2348 (2018) · Zbl 1398.35026
[58] Chen, S. T.; Tang, X. H., Geometrically distinct solutions for Klein-Gordon-maxwell systems with super-linear nonlinearities, Appl. Math. Lett., 90, 188-193 (2019) · Zbl 1411.35105
[59] Tang, X. H.; Chen, S. T., Ground state solutions of Schrödinger-Poisson systems with variable potential and convolution nonlinearity, J. Math. Anal. Appl., 473, 1, 87-111 (2019) · Zbl 1412.35114
[60] Zhang, X. Y.; Lv, X. X.; Li, X. D., Sampled-data based lag synchronization of chaotic delayed neural networks with impulsive control, Nonlinear Dyn., 90, 3, 2199-2207 (2017) · Zbl 1380.34082
[61] Xu, C. J., Local and global Hopf bifurcation analysis on simplified bidirectional associative memory neural networks with multiple delays, Math. Comput. Simul., 149, 69-90 (2018) · Zbl 1540.92032
[62] Xu, C. J.; Li, P. L., On anti-periodic solutions for neutral shunting inhibitory cellular neural networks with time-varying delays and \(d\) operator, Neurocomputing, 275, 377-382 (2018)
[63] Xu, C. J.; Li, P. L., Global exponential convergence of fuzzy cellular neural networks with leakage delays, distributed delays and proportional delays, Circuits Syst. Signal Process., 37, 1, 163-177 (2018) · Zbl 1497.93193
[64] Zhang, J.; Wang, J. R., Numerical analysis for Navier-Stokes equations with time fractional derivatives, Appl. Math. Comput.s, 336, 481-489 (2018) · Zbl 1427.76177
[65] Guo, Y. X., Globally robust stability analysis for stochastic Cohen-Grossberg neural networks with impulse control and time-varying delays, Ukr. Math. J., 69, 8, 1220-1233 (2018) · Zbl 1426.93352
[66] Cao, X. K.; Wang, J. R., Finite-time stability of a class of oscillating systems with two delays, Math. Methods Appl. Sci., 41, 13, 4943-4954 (2018) · Zbl 1397.34124
[67] Guo, Y. X., Exponential stability analysis of traveling waves solutions for nonlinear delayed cellular neural networks, Dyn. Syst., 32, 4, 490-503 (2017) · Zbl 1382.34077
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.