×

Detecting special-cause variation ‘events’ from process data signatures. (English) Zbl 1516.62688

Summary: The ability to detect the special-cause variation of incoming feedstocks from advanced sensor technology is invaluable to manufacturers. Many on-line sensors produce data signatures that require further off-line statistical processing for interpretation by operational personnel. However, early detection of changes in variation in incoming feedstocks may be imperative to promote early-stage preventive measures. A method is proposed in this applied study for developing control bands to quantify the variation of data signatures in the context of statistical process control (SPC). Control bands based on pointwise prediction intervals constructed from the Bonferroni Inequality and Bayesian smoothing splines are developed. Applications using the control band method for data signatures from near-infrared (NIR) spectroscopy scans of industrial fibers of Switchgrass (Panicum virgatum) used for biofuels production, Loblolly Pine (Pinus taeda) fibers for medium density fiberboard production, and formaldehyde (HCHO) emissions from particleboard were used. Simulations curves \((k)\) of \(k=100\), \(k=1000\), and \(k=10,000\) indicate that the Bonferroni method for detecting special-cause variation is closely aligned with the Shewhart definition of control limits when the pdfs are Gaussian or lognormal.

MSC:

62-XX Statistics

References:

[1] Stoumbos, Z. G.; Reynolds Jr, M. R.; Ryan, T. P.; Woodall, W. H., The state of statistical process control as we proceed into the 21st Century, J. Am. Stat. Assoc., 95, 992-998 (2000) · doi:10.1080/01621459.2000.10474292
[2] Bischak, D. P.; Trietsch, D., The rate of false signals in control charts with estimated limits, J. Qual. Technol., 39, 54-65 (2007) · doi:10.1080/00224065.2007.11917673
[3] Woodall, W.; Spitzner, H.; Montgomery, D. J., Using control charts to monitor process and product quality profiles, J. Qual. Technol., 36, 309-320 (2004) · doi:10.1080/00224065.2004.11980276
[4] Rhyne, T. M.; Treinish, L., Data signatures and visualization of scientific data sets, IEEE Comput Graph, 3/4, 12-15 (2000)
[5] Woodall, W. H., Controversies and contradictions in statistical process control, J. Qual. Technol., 32, 341-350 (2000) · doi:10.1080/00224065.2000.11980013
[6] Liao, Y.; Deschamps, F.; de Freitas, E., Past, present and future of Industry 4.0 - a systematic literature review and research agenda proposal, Int. J. Prod. Res., 55, 3609-3629 (2017) · doi:10.1080/00207543.2017.1308576
[7] Deming, W. E., On probability as a basis for action, Am. Stat., 29, 146-152 (1975)
[8] Deming, W. E., Out of the Crisis (1986), Massachusetts Institute of Technology, Center for Advanced Engineering Study: Massachusetts Institute of Technology, Center for Advanced Engineering Study, Cambridge, MA
[9] Taguchi, G., Taguchi on Robust Technology Development (1993), The American Society of Mechanical Engineers, American Society of Mechanical Engineers (ASME) Press: The American Society of Mechanical Engineers, American Society of Mechanical Engineers (ASME) Press, New York, NY
[10] Edwards, D. J.; León, R. V.; Young, T. M.; Guess, F. M.; Crookston, K. A., Comparison of two wood plastic composite extruders using bootstrap confidence intervals on measurements of sample failure data, Qual. Eng., 25, 23-33 (2013) · doi:10.1080/08982112.2012.728496
[11] Lawless, J. F.; Mackay, R. J.; Robinson, J. A., Analysis of variation transmission in manufacturing processes – part I, J. Qual. Technol., 31, 131-142 (1999) · doi:10.1080/00224065.1999.11979910
[12] Hahn, G. J., Deming’s impact on industrial statistics: some reflections, Am. Stat., 49, 336-341 (1995)
[13] Reynolds Jr, M. R.; Stoumbos, Z. G., Monitoring the process mean and variance using individual observations and variable sampling intervals, J. Qual. Technol., 33, 181-205 (2000) · doi:10.1080/00224065.2001.11980066
[14] Hahn, G. J.; Meeker, W. Q., Statistical Intervals (1991), John Wiley and Sons: John Wiley and Sons, New York, NY · Zbl 0850.62763
[15] Shewhart, W., Economic Control of Quality of Manufactured Product (1931), D. Van Nostrand Company: D. Van Nostrand Company, New York, NY
[16] Young, T. M.; Clapp Jr, N. E.; Guess, F. M.; Chen, C.-H., Predicting key reliability response with limited response data, Qual. Eng., 26, 223-232 (2014) · doi:10.1080/08982112.2013.807930
[17] Ceriolo, A., Laurini, F., and Corbellini, A., Functional cluster analysis of financial time series, Proc. of the Classification and Data Analysis Group of the Italian Statistical Society, September 22-24, Bologna, Italy, 2003.
[18] Morris, J. S.; Arroyo, C.; Coull, B. A.; Ryan, L. M.; Herrick, R.; Gortmaker, S. L., Using wavelet-based functional mixed models to characterize population heterogeneity in accelerator profiles: a case study, J. Am. Stat. Assoc., 101, 1352-1364 (2006) · Zbl 1171.62357 · doi:10.1198/016214506000000465
[19] Bertran, E.; Blanco, M.; Maspoch, S.; Ortiz, M. C.; Sanchez, M. S.; Sarabia, L. A., Handling intrinsic non-linearity in near-infrared reflectance spectroscopy, Chemomet Intell. Lab., 49, 215-224 (1999) · doi:10.1016/S0169-7439(99)00043-X
[20] Bowman, A.; Young, S., Graphical comparison of nonparametric curves, Appl. Stat., 45, 83-98 (1996) · Zbl 0858.62003 · doi:10.2307/2986225
[21] Colosimo, B. M.; Semeraro, Q.; Pacella, M., Statistical process control for geometric specifications: on monitoring of roundness profiles, J. Qual. Technol., 40, 1-18 (2008) · doi:10.1080/00224065.2008.11917709
[22] Golowich, S.; Landwehr, J.; Vander Wirl, S., Interplay between physics and statistics for modeling optical fiber bandwidth, Technometrics., 44, 215-229 (2002) · doi:10.1198/004017002188618400
[23] Heckman, N.; Zamar, R. H., Comparing shapes of regression functions, Biometrika, 87, 135-144 (2000) · Zbl 0974.62036 · doi:10.1093/biomet/87.1.135
[24] Kim, K.; Mahmoud, M. A.; Woodall, W. H., On the monitoring of linear profiles, J. Qual. Technol., 35, 317-328 (2003) · doi:10.1080/00224065.2003.11980225
[25] Sanchez, M. S.; Bertran, E.; Sarabia, L. A.; Ortiz, M. C.; Blanco, M.; Coello, J., Quality control decisions with near infrared data, Chemometr. Intell. Lab., 53, 69-80 (2000) · doi:10.1016/S0169-7439(00)00094-0
[26] Rials, T. G.; Kelley, S. S.; So, C.-L., Use of advanced spectroscopy techniques for predicting the mechanical properties of wood composites, Wood Fiber Sci., 34, 398-407 (2002)
[27] Lai, C.-D.; Murthy, D. N.; Xie, M.; Pham, H., Weibull distributions and their applications, Springer Handbook of Engineering Statistics (2006), Springer Handbooks, Springer: Springer Handbooks, Springer, London
[28] Hardle, W., Applied Nonparametric Regression (1990), Cambridge University Press: Cambridge University Press, New York, NY · Zbl 0714.62030
[29] Milton, J. S.; Arnold, J. C., Introduction to Probability and Statistics - Principles and Applications for Engineering and the Computing Sciences (2003), McGraw Hill, Inc.: McGraw Hill, Inc., Boston, MA
[30] Fisher, N., Graphical methods in statistics: current and prospective views, Proc. of the 46th ISI Session 3, 1987.
[31] Wahba, G., Bayesian confidence intervals for the cross-validated smoothing spline, J. R. Stat. Soc., 45, 133-150 (1983) · Zbl 0538.65006
[32] Wang, Y.; Wahba, G., Bootstrap confidence intervals for smoothing splines and their comparison to Bayesian confidence intervals, J. Stat. Comput. Sim., 51, 263-279 (1995) · Zbl 0842.62036 · doi:10.1080/00949659508811637
[33] Vokovinsky, K. E.; Pfahler, L. B., The role of normal data distribution in pharmaceutical development and manufacturing pharmaceutical technology, Pharm. Tech., 38, 1-3 (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.