×

\(p\)-adic incomplete gamma functions and Artin-Hasse-type series. (English) Zbl 1528.33025

Summary: We define and study a \(p\)-adic analogue of the incomplete gamma function related to Morita’s \(p\)-adic gamma function. We also discuss a combinatorial identity related to the Artin-Hasse series, which is a special case of the exponential principle in combinatorics. From this we deduce a curious \(p\)-adic property of \(\#\mathrm{Hom}(G,S_n)\) for a topologically finitely generated group \(G\), using a characterization of \(p\)-adic continuity for certain functions \(f \colon \mathbb Z_{>0} \to \mathbb Q_p\) due to A. O’Desky and D. H. Richman [Sémin. Lothar. Comb. 86B, Article 81, 10 p. (2022; Zbl 1524.33090)]. In the end, we give an exposition of some standard properties of the Artin-Hasse series.

MSC:

33E50 Special functions in characteristic \(p\) (gamma functions, etc.)
33B20 Incomplete beta and gamma functions (error functions, probability integral, Fresnel integrals)
05A05 Permutations, words, matrices
11S80 Other analytic theory (analogues of beta and gamma functions, \(p\)-adic integration, etc.)

Citations:

Zbl 1524.33090

References:

[1] Andrews, G. E., The Theory of Partitions (1998), Cambridge University Press · Zbl 0996.11002
[2] Conrad, K., Artin-Hasse-type series and roots of unity (1984)
[3] Dress, A.; Müller, T., Decomposable functors and the exponential principle, Adv. Math., 129, 2, 188-221 (1997) · Zbl 0947.05002 · doi:10.1006/aima.1997.1648
[4] D. L. Kracht, Applications of the Artin-Hasse Exponential Series and its Generalizations to Finite Algebra Groups, Lecture presentation (Kent State University, 2011).
[5] Morita, Y., A \(p\)-adic analogue of the \(\Gamma \)-function, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 22, 2, 255-266 (1975) · Zbl 0308.12003
[6] Neukirch, J., Algebraic Number Theory (2013), Springer Science and Business Media
[7] O’Desky, A.; Richman, D. H., Derangements and the -adic incomplete gamma function (2020)
[8] Schikhof, W. H., Ultrametric Calculus: An Introduction to \(p\)-Adic Analysis (2007), Cambridge University Press · Zbl 0553.26006
[9] Wohlfahrt, K., Über einen Satz von Dey und die Modulgruppe, Archiv Math., 29, 1, 455-457 (1977) · Zbl 0374.20049 · doi:10.1007/BF01220437
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.