×

Energy-based characterisation of large-scale coherent structures in turbulent pipe flows. (English) Zbl 07929117

Summary: Large-scale coherent structures in incompressible turbulent pipe flow are studied for a wide range of Reynolds numbers (\(Re_\tau =180\), 550, 1000, 2000 and 5200). Employing the Karhunen-Loève decomposition and a novel approach based on the Voronoi diagram, we identify and classify statistically coherent structures based on their location, dimensions and \(Re_\tau\). With increasing \(Re_\tau\), two distinct classes of structures become more energetic, namely wall-attached and detached eddies. The Voronoi methodology is shown to delineate these two classes without the need for specific criteria or thresholds. At the highest \(Re_\tau\), the attached eddies scale linearly with the wall-normal distance with a slope of approximately \(l_y\sim 1.2y/R\), while the detached eddies remain constant at the size of \(l_y \approx 0.26R\), with a progressive shift towards the pipe centre. We extract these two classes of structures and describe their spatial characteristics, including radial size, helix angle and azimuthal self-similarity. The spatial distribution could help explain the differences in mean velocity between pipe and channel flows, as well as in modelling large and very-large-scale motions (LSM and VLSM). In addition, a comprehensive description is provided for both wall-attached and detached structures in terms of LSM and VLSM.

MSC:

76-XX Fluid mechanics

References:

[1] Adrian, R., Meinhart, C. & Tomkins, C.2000Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech.422, 1-54. · Zbl 0959.76503
[2] Atzori, M., Vinuesa, R., Lozano-Duràn, A. & Schlatter, P.2018Characterization of turbulent coherent structures in square duct flow. J. Phys.: Conf. Ser.1001 (1), 012008.
[3] Baars, W.J. & Marusic, I.2020aData-driven decomposition of the streamwise turbulence kinetic energy in boundary layers. Part 1. Energy spectra. J. Fluid Mech.882, A25. · Zbl 1460.76449
[4] Baars, W.J. & Marusic, I.2020bData-driven decomposition of the streamwise turbulence kinetic energy in boundary layers. Part 2. Integrated energy and a1. J. Fluid Mech.882, A26. · Zbl 1460.76450
[5] Bailey, S. & Smits, A.2010Experimental investigation of the structure of large- and very-large-scale motions in turbulent pipe flow. J. Fluid Mech.651, 339-356. · Zbl 1189.76013
[6] Balakumar, B.J. & Adrian, R.J.2007Large- and very-large-scale motions in channel and boundary-layer flows. Phil. Trans. R. Soc. A365, 665-681. · Zbl 1152.76369
[7] Baltzer, J., Adrian, R. & Wu, X.2013Structural organization of large and very large scales in turbulent pipe flow simulation. J. Fluid Mech.720, 236-279. · Zbl 1284.76218
[8] Brown, G.L. & Roshko, A.1974On the density effects and large structure in turbulent mixing. J. Fluid Mech.64, 775-816. · Zbl 1416.76061
[9] Cheng, C., Weipeng, L., Lozano-Duràn, A. & Hong, L.2019Identity of attached eddies in turbulent channel flows with bidimensional empirical mode decomposition. J. Fluid Mech.870, 1037-1071. · Zbl 1419.76306
[10] Del Álamo, J.C. & Jiménez, J.2003Spectra of the very large anisotropic scales in turbulent channels. Phys. Fluids15, 41-44. · Zbl 1186.76136
[11] Del Álamo, J.C., Jiménez, J., Zandonade, P. & Moser, R.D.2006Self-similar vortex clusters in the turbulent logarithmic region. J. Fluid Mech.561, 329-358. · Zbl 1157.76346
[12] Deng, S., Pan, C., Wang, J. & He, G.2018On the spatial organization of hairpin packets in a turbulent boundary layer at low-to-moderate Reynolds number. J. Fluid Mech.844, 635-668. · Zbl 1460.76458
[13] Deshpande, R., De Silva, C.M., Lee, M., Monty, J.P. & Marusic, I.2021Data-driven enhancement of coherent structure-based models for predicting instantaneous wall turbulence. Intl J. Heat Fluid Flow92, 108879.
[14] Duggleby, A., Ball, K.S., Paul, M.R. & Fischer, P.F.2007Dynamical eigenfunction decomposition of turbulent pipe flow. J. Turbul.8, N43. · Zbl 1273.76192
[15] Duggleby, A., Ball, K.S. & Schwaenen, M.2009Structure and dynamics of low reynolds number turbulent pipe flow. Phil. Trans. R. Soc.367, 473-488. · Zbl 1221.76057
[16] Duguet, Y., Willis, A. & Kerswell, R.R.2008Transition in pipe flow: the saddle structure on the boundary of turbulence. J. Fluid Mech.613, 255-274. · Zbl 1151.76495
[17] Eckhardt, B., Schneider, T.M., Hof, B. & Westrweel, J.2007Turbulence transition in pipe flow. Annu. Rev. Fluid Mech.39, 447-468. · Zbl 1296.76062
[18] Eitel-Amor, G., Örlü, R., Schlatter, P. & Flores, O.2015Hairpin vortices in turbulent boundary layers. Phys. Fluids27 (2), 025108.
[19] Faisst, H. & Eckhardt, B.2003Travelling waves in pipe flow. Phys. Rev. Lett.91, 224502.
[20] Ganapathisubramani, B., Longmire, E.K. & Marusic2003Characteristics of vortex packets in turbulent boundary layers. J. Fluid Mech.478, 35-46. · Zbl 1032.76500
[21] García-Villalba, M., Kidanemariam, A.G. & Uhlmann, M.2012DNS of vertical plane channel flow with finite-size particles: Voronoi analysis, acceleration statistics and particle-conditioned averaging. Intl J. Multiphase Flow46, 54-74.
[22] Große, S. & Westerweel, J.2011 Investigation of large-scale coherent motion in turbulent pipe flow by means of time resolved stereo-PIV. In The Ninth International Symposium on Particle Image Velocimetry (PIV’11), Kobe, Japan.
[23] Guala, M., Hommema, S.E. & Adrian, R.J.2006Large-scale and very-large-scale motions in turbulent pipe flow. J. Fluid Mech.554, 521-542. · Zbl 1156.76316
[24] Hamilton, J., Kim, J. & Waleffe, F.1995Regeneration mechanisms of near-wall turbulence structures. J. Fluid Mech.287, 317-348. · Zbl 0867.76032
[25] Hellström, L.H.O., Ganapathisubramani, B. & Smits, A.J.2015The evolution of large-scale motions in turbulent pipe flow. J. Fluid Mech.779, 701-715. · Zbl 1360.76102
[26] Hellström, L.H.O., Marusic, I. & Smits, A.J.2016Self-similarity of the large-scale motions in turbulent pipe flow. J. Fluid Mech.792, R1. · Zbl 1381.76119
[27] Hellström, L.H.O., Sinha, A. & Smits, A.J.2011Visualizing the very-large-scale motions in turbulent pipe flow. Phys. Fluids23, 011703.
[28] Hof, B., Van Doorne, C.W.H., Westerweel, J., Nieuwstadt, F.T.M., Faisst, H., Eckhardt, B., Wedin, H., Kerswell, R.R. & Waleffe, F.2004Experimental observation of nonlinear travelling waves in turbulent pipe flow. Science305, 1594-1598.
[29] Hu, R., Yang, X.I.A. & Zheng, X.2020Wall-attached and wall-detached eddies in wall-bounded turbulent flows. J. Fluid Mech.885, A30. · Zbl 1460.76467
[30] Hussain, F.1986Coherent structures and turbulence. J. Fluid Mech.173, 303-356.
[31] Hutchins, N. & Marusic, I.2007Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech.579, 1-28. · Zbl 1113.76004
[32] Hwang, Y.2015Statistical structure of self-sustaining attached eddies in turbulent channel flow. J. Fluid Mech.767, 254-289.
[33] Jeong, J., Hussain, F., Schoppa, W. & Kim, J.1997Coherent structures near the wall in a turbulent channel flow. J. Fluid Mech.332, 185-214. · Zbl 0892.76036
[34] Jiménez, J.1998 The largest scales of turbulent wall flows. In Proceedings of the Summer Program, Center for Turbulence Research, Stanford University, p. 137-154.
[35] Jiménez, J.2018Coherent structures in wall-bounded turbulence. J. Fluid Mech.842, P1. · Zbl 1419.76316
[36] Jiménez, J. & Pinelli, A.1999The autonomous cycle of near-wall turbulence. J. Fluid Mech.389, 335-359. · Zbl 0948.76025
[37] Karhunen, K.1947Uber lineare methoden in der wahrscheinlichkeitsrechnung. Annu. Acad. Sci. Fenn.37, 3-79. · Zbl 0030.16502
[38] Kim, H.T., Kline, S.J. & Reynolds, W.C.1971The production of turbulence near a smooth wall in a turbulent boundary layer. J. Fluid Mech.50, 133-160.
[39] Kim, K.C. & Adrian, R.J.1999Very-large-scale motion in the outer layer. Phys. Fluids11, 417-422. · Zbl 1147.76430
[40] Kovasznay, L., Kibens, V. & Blackwelder, R.1970Large-scale motion in the intermittent region of a turbulent boundary layer. J. Fluid Mech.41, 283-325.
[41] Lee, M. & Moser, R.2019Spectral analysis of the budget equation in turbulent channel flows at high Reynolds number. J. Fluid Mech.860, 886-938. · Zbl 1415.76350
[42] Loève, M.1948Fonctions Aleatoires du Second Ordre. Processus Stochastiques et Mouvement Brownien, 1st edn. Gauthier-Villars.
[43] Lozano-Duràn, A., Flores, O. & Jiménez, J.2012The three-dimensional structure of momentum transfer in turbulent channels. J. Fluid Mech.694, 100-130. · Zbl 1250.76108
[44] Lumley, J.L.1967The structure of inhomogeneous turbulence. Atmos. Turbul. Radio Wave Propag.6, 166-177.
[45] Lumley, J.L.1970Stochastic Tools in Turbulence. Elsevier. · Zbl 0273.76035
[46] Massaro, D.2024 Space-adaptive simulation of transition and turbulence in shear flows. PhD thesis, KTH Royal Institute of Technology.
[47] Massaro, D., Yao, J., Rezaeiravesh, S., Schlatter, P. & Hussain, F.2024Karhunen-Loève decomposition of high Reynolds number turbulent pipe flows: a Voronoi analysis. J. Phys.: Conf. Ser.2753, 012018.
[48] Mckeon, B.J. & Sharma, A.S.2010A critical-layer framework for turbulent pipe flow. J. Fluid Mech.658, 336-382. · Zbl 1205.76138
[49] Moisy, F. & Jiménez, J.2004Geometry and clustering of intense structures in isotropic turbulence. J. Fluid Mech.513, 111-133. · Zbl 1107.76328
[50] Monchaux, R., Bourgoin, M. & Cartellier, A.2010Preferential concentration of heavy particles: a voronoi analysis. Phys. Fluids22, 103304.
[51] Monty, J.P., Hutchins, N., Ng, H.C.H., Marusic, I. & Chong, M.S.2009A comparison of turbulent pipe, channel and boundary layer flows. J. Fluid Mech.632, 431-442. · Zbl 1183.76036
[52] Monty, J.P., Stewart, J.A., Williams, R.C. & Chong, M.S.2007Large-scale features in turbulent pipe and channel flows. J. Fluid Mech.589, 147-156. · Zbl 1141.76316
[53] Oliver, T.A., Malaya, N., Ulerich, R. & Moser, R.D.2014Estimating uncertainties in statistics computed from direct numerical simulation. Phys. Fluids26, 035101.
[54] Perry, A.E. & Chong, M.S.1982On the mechanism of wall turbulence. J. Fluid Mech.119, 173-217. · Zbl 0517.76057
[55] Perry, A.E. & Marusic, I.1995A wall-wake model for the turbulence structure of boundary layers. Part 1. Extension of the attached eddy hypothesis. J. Fluid Mech.298, 361-388. · Zbl 0849.76030
[56] Pirozzoli, S., Romero, J., Fatica, M., Verzicco, R. & Orlandi, P.2021One-point statistics for turbulent pipe flow up to \(Re_{\tau } \approx 6000\). J. Fluid Mech.926, A28. · Zbl 1487.76047
[57] Pringle, C.C.T. & Kerswell, R.R.2007Asymmetric, helical, and mirror-symmetric traveling waves in pipe flow. Phys. Rev. Lett.99, 074502.
[58] Rezaeiravesh, S., Xavier, D., Vinuesa, R., Yao, J., Hussain, F. & Schlatter, P.2022 Estimating uncertainty of low- and high-order turbulence statistics in wall turbulence. In Twelfth International Symposium on Turbulence and Shear Flow Phenomena.
[59] Robinson, S.K.1991Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech.23, 601-639.
[60] Schlatter, P., Li, Q., Örlü, R., Hussain, F. & Henningson, D.S.2014On the near-wall vortical structures at moderate Reynolds numbers. Eur. J. Mech. B/Fluids48, 75-93.
[61] Schmid, P.J.2022Dynamic mode decomposition and its variants. Annu. Rev. Fluid Mech.54 (1), 225-254. · Zbl 1492.76092
[62] Schoppa, W. & Hussain, F.2002Coherent structure generation in near-wall turbulence. J. Fluid Mech.435, 57-108. · Zbl 1141.76408
[63] Sharma, A.S. & Mckeon, B.J.2013On coherent structure in wall turbulence. J. Fluid Mech.728, 196-238. · Zbl 1291.76173
[64] Sirovich, L.1987aTurbulence and the dynamics of coherent structures. 2. Symmetries and transformations. Q. Appl. Maths45, 573-582.
[65] Sirovich, L.1987bTurbulence and the dynamics of coherent structures. Part 1. Coherent structures. Q. Appl. Maths45, 561-571. · Zbl 0676.76047
[66] Townsend, A.A.1951The structure of the turbulent boundary layer. Math. Proc. Camb. Philos. Soc.47, 375-395. · Zbl 0042.19203
[67] Townsend, A.A.1961Equilibrium layers and wall turbulence. J. Fluid Mech.11, 97-120. · Zbl 0127.42602
[68] Townsend, A.A.1976The Structure of Turbulent Shear Flow, 2nd edn. Cambridge University Press. · Zbl 0325.76063
[69] Tropea, C., Yarin, A.L. & Foss, J.F.2007Springer Handbook of Experimental Fluid Mechanics, 1st edn. Springer.
[70] Wallace, J.M., Eckelman, H. & Brodkey, R.S.1972The wall region in turbulent shear flow. J. Fluid Mech.54, 39-48.
[71] Wang, L., Pan, C. & Wang, J.2022aWall-attached and wall-detached eddies in proper orthogonal decomposition modes of a turbulent channel flow. Phys. Fluids34, 095124.
[72] Wang, L., Pan, C., Wang, J. & Gao, Q.2022bStatistical signatures of u component wall-attached eddies in proper orthogonal decomposition modes of a turbulent boundary layer. J. Fluid Mech.944, A26. · Zbl 1510.76071
[73] Webber, G.A., Handler, R.A. & Sirovich, L.1997The Karhunen-Loève decomposition of minimal channel flow. Phys. Fluids9 (4), 1054-1066. · Zbl 1185.76787
[74] Willis, A.P.2017The Openpipeflow Navier-Stokes solver. SoftwareX6, 124-127.
[75] Willmarth, W.W. & Lu, S.S.1972Structure of the reynolds stress near the wall. J. Fluid Mech.55, 65-92.
[76] Wu, X., Baltzer, J.R. & Adrian, R.J.2012Direct numerical simulation of a 30R long turbulent pipe flow at \(R^+=685\): large- and very large-scale motions. J. Fluid Mech.698, 235-281. · Zbl 1250.76116
[77] Yao, J., Rezaeiravesh, S., Schlatter, P. & Hussain, F.2023Direct numerical simulations of turbulent pipe flow up to \(Re_\tau \approx 5200\). J. Fluid Mech.956, A18.
[78] Zaman, K.B.M.Q. & Hussain, A.K.M.F.1981Taylor hypothesis and large-scale coherent structures. J. Fluid Mech.112, 379-396.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.