×

Wide-band information transmission at the calyx of Held. (English) Zbl 1157.92304

Summary: We use a mathematical model of the calyx of Held to explore information transmission at this giant glutamatergic synapse. The significant depression of the postsynaptic response to repeated stimulation in vitro is a result of various activity-dependent processes in multiple timescales, which can be reproduced by multiexponential functions in this model. When the postsynaptic current is stimulated by Poisson-distributed spike trains, its amplitude varies considerably with the preceding interspike intervals. Here we quantify the information contained in the postsynaptic current amplitude about preceding interspike intervals and determine the impact of different pre- and postsynaptic factors on information transmission. The mutual information between presynaptic spike times and the amplitude of the postsynaptic response in general decreases as the mean stimulation rate increases, but remains high even at frequencies greater than 100 Hz, unlike at many neocortical synapses. The maintenance of information transmission is attributable largely to vesicle recycling rates at low frequencies of stimulation, shifting to vesicle release probability at high frequencies. Also, at higher frequencies, the synapse operates largely in a release-ready mode in which most release sites contain a release-ready vesicle and release probabilities are low.

MSC:

92C20 Neural biology
94A17 Measures of information, entropy

References:

[1] DOI: 10.1126/science.275.5297.221 · doi:10.1126/science.275.5297.221
[2] DOI: 10.1017/CBO9780511574566 · doi:10.1017/CBO9780511574566
[3] DOI: 10.1126/science.273.5283.1868 · doi:10.1126/science.273.5283.1868
[4] DOI: 10.1073/pnas.88.24.11569 · doi:10.1073/pnas.88.24.11569
[5] DOI: 10.1113/jphysiol.2005.086736 · doi:10.1113/jphysiol.2005.086736
[6] DOI: 10.1038/14731 · doi:10.1038/14731
[7] DOI: 10.1113/jphysiol.1995.sp021095 · doi:10.1113/jphysiol.1995.sp021095
[8] DOI: 10.1111/j.1469-7793.1998.149by.x · doi:10.1111/j.1469-7793.1998.149by.x
[9] Brew H., Journal of Neuroscience 15 pp 8011– (1995)
[10] DOI: 10.1111/j.1469-7793.1998.723bd.x · doi:10.1111/j.1469-7793.1998.723bd.x
[11] Destexhe A., Journal of Neurophysiology 81 pp 1531– (1999)
[12] DOI: 10.1113/jphysiol.1967.sp008367 · doi:10.1113/jphysiol.1967.sp008367
[13] Faas G., Journal of Neuroscience 22 pp 6885– (2002)
[14] DOI: 10.1113/jphysiol.1994.sp020303 · doi:10.1113/jphysiol.1994.sp020303
[15] DOI: 10.1016/S0896-6273(00)81017-X · doi:10.1016/S0896-6273(00)81017-X
[16] Fuhrmann G., Journal of Neurophysiology 87 pp 140– (2002) · doi:10.1152/jn.00258.2001
[17] DOI: 10.1007/3-540-46084-5_8 · doi:10.1007/3-540-46084-5_8
[18] DOI: 10.1016/j.neucom.2004.01.080 · doi:10.1016/j.neucom.2004.01.080
[19] DOI: 10.1113/jphysiol.2004.079160 · doi:10.1113/jphysiol.2004.079160
[20] DOI: 10.1016/j.neucom.2006.10.074 · doi:10.1016/j.neucom.2006.10.074
[21] DOI: 10.1113/jphysiol.2008.152124 · doi:10.1113/jphysiol.2008.152124
[22] Hô N., Journal of Neurophysiology 84 pp 1488– (2000)
[23] DOI: 10.1016/j.heares.2004.11.023 · doi:10.1016/j.heares.2004.11.023
[24] Kopp-Scheinpflug C., Journal of Neuroscience 23 pp 9199– (2003)
[25] DOI: 10.1007/s10162-002-2010-5 · doi:10.1007/s10162-002-2010-5
[26] Lange R., Journal of Neuroscience 23 pp 10164– (2003)
[27] DOI: 10.1038/nn826 · doi:10.1038/nn826
[28] DOI: 10.1038/nature03568 · doi:10.1038/nature03568
[29] DOI: 10.1093/cercor/7.6.523 · doi:10.1093/cercor/7.6.523
[30] DOI: 10.1073/pnas.95.9.5323 · doi:10.1073/pnas.95.9.5323
[31] DOI: 10.1146/annurev.physiol.61.1.497 · doi:10.1146/annurev.physiol.61.1.497
[32] DOI: 10.1162/neco.1992.4.4.518 · doi:10.1162/neco.1992.4.4.518
[33] DOI: 10.1007/s00441-006-0272-7 · doi:10.1007/s00441-006-0272-7
[34] DOI: 10.1016/S0896-6273(00)80789-8 · doi:10.1016/S0896-6273(00)80789-8
[35] DOI: 10.1038/35022702 · doi:10.1038/35022702
[36] DOI: 10.1016/S0166-2236(02)02139-2 · doi:10.1016/S0166-2236(02)02139-2
[37] DOI: 10.1002/j.1538-7305.1948.tb01338.x · Zbl 1154.94303 · doi:10.1002/j.1538-7305.1948.tb01338.x
[38] Smith P., Journal of Neurophysiology 79 pp 3127– (1998)
[39] DOI: 10.1007/BF00229781 · doi:10.1007/BF00229781
[40] DOI: 10.1038/nn1533 · doi:10.1038/nn1533
[41] DOI: 10.1126/science.274.5287.594 · doi:10.1126/science.274.5287.594
[42] DOI: 10.1113/jphysiol.2005.093468 · doi:10.1113/jphysiol.2005.093468
[43] DOI: 10.1016/S0301-0082(00)00008-3 · doi:10.1016/S0301-0082(00)00008-3
[44] DOI: 10.1016/S0006-3495(03)74967-4 · doi:10.1016/S0006-3495(03)74967-4
[45] DOI: 10.1146/annurev.physiol.61.1.477 · doi:10.1146/annurev.physiol.61.1.477
[46] DOI: 10.1016/0896-6273(93)90066-Z · doi:10.1016/0896-6273(93)90066-Z
[47] DOI: 10.1073/pnas.94.2.719 · doi:10.1073/pnas.94.2.719
[48] DOI: 10.1038/nrn705 · doi:10.1038/nrn705
[49] von Gersdorff H., Journal of Neuroscience 17 pp 8137– (1997)
[50] DOI: 10.1016/S0006-3495(99)77079-7 · doi:10.1016/S0006-3495(99)77079-7
[51] Wong A., Journal of Neuroscience 23 pp 4868– (2003)
[52] DOI: 10.1016/S0896-6273(01)80039-8 · doi:10.1016/S0896-6273(01)80039-8
[53] DOI: 10.1016/0378-5955(93)90123-I · doi:10.1016/0378-5955(93)90123-I
[54] DOI: 10.1523/JNEUROSCI.2972-05.2005 · doi:10.1523/JNEUROSCI.2972-05.2005
[55] Zador A., Journal of Neurophysiology 79 pp 1219– (1998)
[56] DOI: 10.1146/annurev.physiol.64.092501.114547 · doi:10.1146/annurev.physiol.64.092501.114547
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.