×

A novel size independent symplectic analytical singular element for inclined crack terminating at bimaterial interface. (English) Zbl 1476.74134

Summary: Cracks often exist in composite structures, especially at the interface of two different materials. These cracks can significantly affect the load bearing capacity of the structure and lead to premature failure of the structure. In this paper, a novel element for modeling the singular stress state around the inclined interface crack which terminates at the interface is developed. This new singular element is derived based on the explicit form of the high order eigen solution which is, for the first time, determined by using a symplectic approach. The developed singular element is then applied in finite element analysis and the stress intensity factors (SIFs) for a number of crack configurations are derived. It has been concluded that composites with complex geometric configurations of inclined interface cracks can be accurately simulated by the developed method, according to comparison of the results against benchmarks. It has been found that the stiffness matrix of the proposed singular element is independent of the element size and the SIFs of the crack can be solved directly without any post-processing.

MSC:

74R10 Brittle fracture
74A50 Structured surfaces and interfaces, coexistent phases

References:

[1] Miyazaki, N.; Ikeda, T.; Soda, T.; Munakata, T., Stress intensity factor analysis of interface crack using boundary element method-application of contour-integral method, Eng. Fract. Mech., 45, 599-610 (1993)
[2] Bjerkén, C.; Persson, C., A numerical method for calculating stress intensity factors for interface cracks in bimaterials, Eng. Fract. Mech., 68, 235-246 (2001)
[3] Liu, X. Y.; Xiao, Q. Z.; Karihaloo, B. L., XFEM for direct evaluation of mixed mode SIFs in homogeneous and bi‐materials, Int. J. Numer. Methods Eng., 59, 1103-1118 (2004) · Zbl 1041.74543
[4] Hemanth, D.; Aradhya, K. S.S.; Murthy, T. S.R.; Govinda Raju, N., Strain energy release rates for an interface crack in orthotropic media-a finite element investigation, Eng. Fract. Mech., 72, 759-772 (2005)
[5] Agrawal, A.; Karlsson, A. M., Obtaining mode mixity for a bimaterial interface crack using the virtual crack closure technique, Int. J. Fract., 141, 75-98 (2006) · Zbl 1197.74088
[6] Sharma, K.; Bui, T. Q.; Zhang, C. Z.; Bhargava, R. R., Analysis of a subinterface crack in piezoelectric bimaterials with the extended finite element method, Eng. Fract. Mech., 104, 114-139 (2013)
[7] Menk, A.; Bordas, S., Numerically determined enrichment functions for the extended finite element method and applications to bi‐material anisotropic fracture and polycrystals, Int. J. Numer. Methods Eng., 83, 805-828 (2010) · Zbl 1197.74182
[8] Ma, P.; Su, R. K.L.; Feng, W. J., Fracture analysis of an electrically conductive interface crack with a contact zone in a magnetoelectroelastic bimaterial system, Int. J. Solids Struct., 53, 48-57 (2015)
[9] Banks-Sills, L.; Farkash, E., A note on the virtual crack closure technique for a bimaterial interface crack, Int. J. Fract., 201, 171-180 (2016)
[10] Cook, T. S.; Erdogan, F., Stresses in bonded materials with a crack perpendicular to the interface, Int. J. Eng. Sci., 10, 677-697 (1972) · Zbl 0237.73096
[11] Lin, K. Y.; Mar, J. W., Finite element analysis of a stress intensity factors for crack at a bimaterial interface, Int. J. Fract., 12, 521-531 (1976)
[12] Chen, D. H., A crack normal to and terminating at a bimaterial interface, Eng. Fract. Mech., 49, 517-523 (1994)
[13] Wang, T. Z.; Per, S., A crack perpendicular to and terminating at a bimaterial interface, Acta Mech. Sin., 14, 1, 27-36 (1998)
[14] Lin, Y. Y.; Sung, J. C., Singularities of an inclined crack terminating at an anisotropic bimaterial interface, Int. J. Solids Struct., 34, 3727-3754 (1997) · Zbl 0942.74629
[15] Poonsawat, P.; Wijeyewickrema, A. C.; Karasudhi, P., Stress singularity analysis of a crack terminating at the interface of an anisotropic layered composite, J. Appl. Mech., 65, 829-836 (1998)
[16] Wijeyewickrema, A. C.; Poonsawat, P.; Karasudhi, P., Stress singularities of a crack terminating at the frictional interface of a monoclinic bimaterial composite, Mater. Sci. Eng.: A, 285, 397-407 (2000)
[17] Chang, J.; Xu, J. Q., The singular stress field and stress intensity factors of a crack terminating at a bimaterial interface, Int. J. Mech. Sci., 49, 888-897 (2007)
[18] Tanaka, S.; Suzuki, H.; Sadamoto, S.; Okazawa, S.; Yu, T. T.; Bui, T. Q., Accurate evaluation of mixed-mode intensity factors of cracked shear-deformable plates by an enriched meshfree Galerkin formulation, Arch. Appl. Mech., 87, 279-298 (2017)
[19] Khosravifard, A.; Hematiyan M, R.; Bui, T. Q.; Do, T. V., Accurate and efficient analysis of stationary and propagating crack problems by meshless methods, Theor. Appl. Fract. Mech., 87, 21-34 (2017)
[20] Tanaka, S.; Suzuki, H.; Sadamoto, S.; Sannomaru, S.; Yu, T. T.; Bui, T. Q., J-integral evaluation for 2D mixed-mode crack problems employing a meshfree stabilized conforming nodal integration method, Comput. Mech., 58, 2, 185-198 (2016) · Zbl 1398.74476
[21] Tanaka, S.; Suzuki, H.; Sadamoto, S.; Imachi, M.; Bui, T. Q., Analysis of cracked shear deformable plates by an effective meshfree plate formulation, Eng. Fract. Mech., 144, 142-157 (2015)
[22] Nguyen, N. T.; Bui, T. Q.; Zhang, C. Z.; Truong, T. T., Crack growth modeling in elastic solids by the extended meshfree Galerkin radial point interpolation method, Eng. Anal. Boundary Elem., 44, 87-97 (2014) · Zbl 1297.74108
[23] Kang, Z. Y.; Bui, T. Q.; Nguyen, D. D.; Saitoh, T.; Hirose, S., An extended consecutive-interpolation quadrilateral element (XCQ4) applied to linear elastic fracture mechanics, Acta Mech., 226, 3991-4015 (2015) · Zbl 1336.74010
[24] Zhang, X.; Bui, T. Q., A fictitious crack XFEM with two new solution algorithms for cohesive crack growth modeling in concrete structures, Eng. Comput., 32, 473-497 (2015)
[25] Kang, Z.; Bui, T. Q.; Saitoh, T.; Hirose, S., Quasi-static crack propagation simulation by an enhanced nodal gradient finite element with different enrichments, Theor. Appl. Fract. Mech., 87, 61-77 (2017)
[26] Yu, T.; Bui, T. Q.; Liu, P.; Zhang, C. Z.; Hirose, S., Interfacial dynamic impermeable cracks analysis in dissimilar piezoelectric materials under coupled electromechanical loading with the extended finite element method, Int. J. Solids Struct., 67, 205-218 (2015)
[27] Bouhala, L.; Shao, Q.; Koutsawa, Y.; Younes, A.; Nunez, P.; Makradi, A.; Belouettar, S., An XFEM crack-tip enrichment for a crack terminating at a bi-material interface, Eng. Fract. Mech., 102, 51-64 (2013)
[28] Bhattacharya, S.; Singh, I. V.; Mishra, B. K.; Bui, T. Q., Fatigue crack growth simulations of interfacial cracks in bi-layered FGMs using XFEM, Comput. Mech., 52, 799-814 (2013) · Zbl 1311.74145
[29] Bui, T. Q., Extended isogeometric dynamic and static fracture analysis for cracks in piezoelectric materials using NURBS, Comput. Methods Appl. Mech. Eng., 295, 470-509 (2015) · Zbl 1423.74866
[30] Bui, T. Q.; Hirose, S.; Zhang, C. Z.; Rabczuk, T.; Wu, C. T.; Saitoh, T.; Lei, J., Extended isogeometric analysis for dynamic fracture in multiphase piezoelectric/piezomagnetic composites, Mech. Mater., 97, 135-163 (2016)
[31] Singh, S. K.; Singh, I. V.; Mishra, B. K.; Bhardwaj, G.; Bui, T. Q., A simple, efficient and accurate Bézier extraction based T-spline XIGA for crack simulations, Theor. Appl. Fract. Mech., 88, 74-96 (2017)
[32] Natarajan, S.; Song, C. M.; Belouettar, S., Numerical evaluation of stress intensity factors and T-stress for interfacial cracks and cracks terminating at the interface without asymptotic enrichment, Comput. Methods Appl. Mech. Eng., 279, 86-112 (2014) · Zbl 1423.74364
[33] Nasri, K.; Abbadi, M.; Zenasni, M.; Azari, Z., Numerical and experimental study of crack behaviour at the zinc/TRIP steel 800 interface, Comput. Mater. Sci., 82, 172-177 (2014)
[34] Adams, G. G., Critical value of the generalized stress intensity factor for a crack perpendicular to an interface, Proc. R. Soc. A, 471, Article 20150571 pp. (2015) · Zbl 1371.74240
[35] Mehidi, A.; Kaddouri, K.; Belhouari, M.; Amiri, A.; Bachir Bouiadjra, B., Three-dimensional finite element analysis of a crack normal to and terminating at a bi-material interface, J. Braz. Soc. Mech. Sci. Eng., 37, 1785-1792 (2015)
[36] Muthu, N.; Maiti, S. K.; Falzon, B. G.; Yan, W., Crack propagation in non-homogenous materials: Evaluation of mixed-mode SIFs, T-stress and kinking angle using a variant of EFG Method, Eng. Anal Boundary Elem., 72, 11-26 (2016) · Zbl 1403.74088
[37] Chang, J. H.; Jeng, B. S., M- and \(M_{int}\)-integrals for cracks normal to the interface of anisotropic bimaterials, Int. J. Fract., 197, 49-61 (2016)
[38] Yao, W. A.; Zhong, W. X.; Lim, C. W., Symplectic Elasticity (2009) · Zbl 1170.74002
[39] Lim, C. W.; Xu, X. S., Symplectic elasticity: theory and applications, Appl. Mech. Rev., 63, Article 050802 pp. (2010)
[40] Hu, X. F.; Yao, W. A., A novel singular finite element on mixed-mode bimaterial interfacial cracks with arbitrary crack surface tractions, Int. J. Fract., 172, 41-52 (2011) · Zbl 1306.74060
[41] Wang, J. S.; Qin, Q. H., Symplectic model for piezoelectric wedges and its application in analysis of electroelastic singularities, Philos. Mag., 87, 225-251 (2007)
[42] Xu, C. H.; Zhou, Z. H.; Xu, X. S.; Leung, A. Y.T., Electroelastic singularities and intensity factors for an interface crack in piezoelectric-elastic bimaterials, Appl. Math. Model., 39, 2721-2739 (2015) · Zbl 1443.74188
[43] Zhou, Z. H.; Xu, X. S.; Leung, A. Y.T., Mode III edge-crack in magneto-electro-elastic media by symplectic expansion, Eng. Fract. Mech., 77, 3157-3173 (2010)
[44] Zhou, Z. H.; Xu, X. S.; Leung, A. Y.T., Hamiltonian analysis of a magnetoelectroelastic notch in a mode III singularity, Smart Mater. Struct., 22, Article 095018 pp. (2013)
[45] Zhang, H. W.; Zhong, W. X., Hamiltonian principle based stress singularity analysis near crack corners of multi-material junctions, Int. J. Solids Struct., 40, 493-510 (2003) · Zbl 1064.74560
[46] Yao, W. A.; Hu, X. F., A novel singular finite element of mixed-mode crack problems with arbitrary crack tractions, Mech. Res. Commun., 38, 170-175 (2011) · Zbl 1272.74620
[47] Hu, X. F.; Wang, J. N.; Yao, W. A., A size independent enriched finite element for the modeling of bimaterial interface cracks, Comput. Struct., 172, 1-10 (2016)
[48] Hu, X. F.; Yao, W. A., A new enriched finite element for fatigue crack growth, Int. J. Fatigue, 48, 247-256 (2013)
[49] Yao, W. A.; Hu, X. F., A novel singular finite element on mixed-mode Dugdale model based crack, J. Eng. Mater. Technol., 134, Article 021003 pp. (2012)
[50] Yao, W. A.; Hu, X. F., A singular finite element on the mixed-mode bimaterial interfacial cracks, Int. J. Comput. Methods Eng. Sci. Mech., 13, 219-226 (2012) · Zbl 07871320
[51] Hu, X. F.; Gao, H. Y.; Yao, W. A.; Yang, S. T., Study on steady-state thermal conduction with singularities in multi-material composites, Int. J. Heat Mass Transfer, 104, 861-870 (2017)
[52] Hu, X. F.; Bui, T. Q.; Wang, J. N.; Yao, W. A.; Tong, L. H.T.; Singh, I. V.; Tanaka, S., A new cohesive crack tip symplectic analytical singular element involving plastic zone length for fatigue crack growth prediction under variable amplitude cyclic loading, Eur. J. Mech.-A/Solids, 65, 79-90 (2017) · Zbl 1406.74589
[53] Hu, X. F.; Gao, H. Y.; Yao, W. A.; Yang, S. T., A symplectic analytical singular element for steady-state thermal conduction with singularities in composite structures, Numer. Heat Transfer, Part B: Fundam., 70, 406-419 (2016)
[54] Zhou, R.; Zhu, P.; Li, Z., The shielding effect of the plastic zone at mode-II crack tip, Int. J. Fract., 171, 195-200 (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.