×

Multi-fidelity uncertainty quantification method with application to nonlinear structural response analysis. (English) Zbl 1481.62126

Summary: The application of uncertainty quantification (UQ) in complex structural response analysis is limited by solution efficiency. A multi-fidelity (MF) method for UQ is proposed in this paper, in which statistical moments are first evaluated using low cost low-fidelity (LF) model first, and then calibrated with a small number of high-fidelity (HF) samples. Only the error distribution of LF solutions and the covariance between the errors and the LF solutions are employed to derive a simple and straight forward MF formulation. The proposed method is demonstrated in the UQ of damage analysis of a C/SiC plate with a hole, where the HF model is a nonlinear global model considering C/SiC material damage, and the LF model is a linear global model driven nonlinear sub model. Uncertainty propagation is carried out using a sparse polynomial chaos expansion method. Evaluations of the MF method based on four factors: correctness, efficiency, precision and reliability, are carried out. The results show that the MF method can estimate the statistical moments of nonlinear strain responses unbiasedly. Computational cost is reduced by 52.7% compared to that utilizing HF model alone. MF methods can reduce computational cost significantly while maintaining accuracy and can be used for wide range of applications.

MSC:

62P30 Applications of statistics in engineering and industry; control charts
62N05 Reliability and life testing
Full Text: DOI

References:

[1] Oberkampf, W. L.; DeLand, S. M.; Rutherford, B. M.; Diegert, K. V.; Alvin, K. F., Error and uncertainty in modeling and simulation, Reliab. Eng. Syst. Saf., 75, 3, 333-357 (2002)
[2] Conrad, P. R.; Girolami, M.; Särkkä, S.; Stuart, A.; Zygalakis, K., Statistical analysis of differential equations: introducing probability measures on numerical solutions, Stat. Comput., 27, 4, 1065-1082 (2017) · Zbl 1384.62082
[3] Roy, C. J.; Oberkampf, W. L., A comprehensive framework for verification, validation, and uncertainty quantification in scientific computing, Comput. Methods Appl. Mech. Eng., 200, 25-28, 2131-2144 (2011) · Zbl 1230.76049
[4] Yao, W.; Chen, X.; Luo, W.; van Tooren, M.; Guo, J., Review of uncertainty-based multidisciplinary design optimization methods for aerospace vehicles, Prog. Aerosp. Sci.5, 47, 6, 450-479 (2011)
[5] Rocchetta, R.; Broggi, M.; Patelli, E., Do we have enough data? Robust reliability via uncertainty quantification, Appl. Math. Model., 54, 710-721 (2018) · Zbl 1480.62210
[6] Schuëller, G. I.; Jensen, H. A., Computational methods in optimization considering uncertainties – an overview, Comput. Methods Appl. Mech. Eng., 198, 1, 2-13 (2008) · Zbl 1194.74258
[7] Mohamed, L.; Christie, M. A.; Demyanov, V., Comparison of stochastic sampling algorithms for uncertainty quantification, SPE J., 15, 01, 31-38 (2010)
[8] Choi, S. K.; Grandhi, R. V.; Canfield, R. A.; Pettit, C. L., Polynomial chaos expansion with latin hypercube sampling for estimating response variability, AIAA J., 42, 6, 1191-1198 (2004)
[9] Sankaran, S.; Marsden, A. L., A stochastic collocation method for uncertainty quantification and propagation in cardiovascular simulations, J. Biomech. Eng., 133, 3, Article 031001 pp. (2011)
[10] Wang, L.; Wang, X.; Su, H.; Lin, G., Reliability estimation of fatigue crack growth prediction via limited measured data, Int. J. Mech. Sci., 121, 44-57 (2017)
[11] Wang, L.; Xiong, C.; Wang, X.; Xu, M.; Li, Y., A dimension-wise method and its improvement for multidisciplinary interval uncertainty analysis, Appl. Math. Model., 59, 680-695 (2018) · Zbl 1480.62250
[12] DeCarlo, E. C.; Smarslok, B. P.; Mahadevan, S., Quantifying model discrepancy in time-dependent, coupled analyses, AIAA J., 56, 6, 2403-2411 (2018)
[13] Wang, R.; Diwekar, U.; Grégoire Padró, C. E., Efficient sampling techniques for uncertainties in risk analysis, Environ. Prog., 23, 2, 141-157 (2004)
[14] Hauseux, P.; Hale, J. S.; Bordas, S. P., Accelerating Monte Carlo estimation with derivatives of high-level finite element models, Comput. Methods Appl. Mech. Eng., 318, 917-936 (2017) · Zbl 1439.65006
[15] Niederreiter, H., Quasi-Monte Carlo methods and pseudo-random numbers, Bull. Am. Math. Soc., 84, 6, 957-1041 (1978) · Zbl 0404.65003
[16] Scheichl, R.; Stuart, A. M.; Teckentrup, A. L., Quasi-Monte Carlo and multilevel Monte Carlo methods for computing posterior expectations in elliptic inverse problems, SIAM/ASA J. Uncertain. Quant., 5, 1, 493-518 (2017) · Zbl 1516.65118
[17] Giles, M. B., Multilevel monte carlo methods, Monte Carlo and Quasi-Monte Carlo Methods 2012, 83-103 (2013), Springer: Springer Berlin, Heidelberg · Zbl 1302.65004
[18] Jakeman, J. D.; Eldred, M. S.; Sargsyan, K., Enhancing ℓ1-minimization estimates of polynomial chaos expansions using basis selection, J. Comput. Phys., 289, 18-34 (2015) · Zbl 1352.65026
[19] Nobile, F.; Tempone, R.; Webster, C. G., An anisotropic sparse grid stochastic collocation method for partial differential equations with random input data, SIAM J. Numer. Anal., 46, 5, 2411-2442 (2008) · Zbl 1176.65007
[20] Xiong, C.; Wang, L.; Liu, G.; Shi, Q., An iterative dimension-by-dimension method for structural interval response prediction with multidimensional uncertain variables, Aerosp. Sci. Technol., 86, 572-581 (2019)
[21] Wang, L.; Xiong, C.; Wang, X.; Li, Y.; Xu, M., Hybrid time-variant reliability estimation for active control structures under aleatory and epistemic uncertainties, J. Sound Vib., 419, 469-492 (2018)
[22] Chen, P.; Quarteroni, A.; Rozza, G., Reduced basis methods for uncertainty quantification, SIAM/ASA J. Uncertain. Quant., 5, 1, 813-869 (2017) · Zbl 1400.65010
[23] Galbally, D.; Fidkowski, K.; Willcox, K.; Ghattas, O., Non‐linear model reduction for uncertainty quantification in large‐scale inverse problems, Int. J. Numer. Methods Eng., 81, 12, 1581-1608 (2010) · Zbl 1183.76837
[24] Viana, F. A.; Simpson, T. W.; Balabanov, V.; Toropov, V., Special section on multidisciplinary design optimization: metamodeling in multidisciplinary design optimization: how far have we really come?, AIAA J., 52, 4, 670-690 (2014)
[25] Wang, G. G.; Shan, S., Review of metamodeling techniques in support of engineering design optimization, J. Mech. Des., 129, 4, 370-380 (2007)
[26] Simpson, T. W.; Mauery, T. M.; Korte, J. J.; Mistree, F., Kriging models for global approximation in simulation-based multidisciplinary design optimization, AIAA J., 39, 12, 2233-2241 (2001)
[27] Schalkoff, R. J., Artificial Neural Networks, 1 (1997), McGraw-Hill: McGraw-Hill New York · Zbl 0910.68165
[28] Basak, D.; Pal, S.; Patranabis, D. C., Support vector regression, Neural Inf. Process. Lett. Rev., 11, 10, 203-224 (2007)
[29] Rasmussen, C. E., Gaussian processes in machine learning, Advanced Lectures on Machine Learning, 63-71 (2004), Springer: Springer Berlin, Heidelberg · Zbl 1120.68436
[30] Calderhead, B.; Girolami, M.; Lawrence, N. D., Accelerating Bayesian inference over nonlinear differential equations with Gaussian processes, Proceedings of the 2008 Conference on Advances in Neural Information Processing Systems, 217-224 (2009)
[31] Hemez, F. M.; Atamturktur, S., The dangers of sparse sampling for the quantification of margin and uncertainty, Reliab. Eng. Syst. Saf., 96, 9, 1220-1231 (2011)
[32] Chakraborty, S.; Chatterjee, T.; Chowdhury, R.; Adhikari, S., A surrogate based multi-fidelity approach for robust design optimization, Appl. Math. Model., 47, 726-744 (2017) · Zbl 1446.90009
[33] M.G. Fernández-Godino, C. Park, N.-H. Kim, R.T. Haftka, Review of multi-fidelity models (2016) arXiv preprint arXiv:1609.07196; M.G. Fernández-Godino, C. Park, N.-H. Kim, R.T. Haftka, Review of multi-fidelity models (2016) arXiv preprint arXiv:1609.07196
[34] Allaire, D.; Willcox, K., A mathematical and computational framework for multifidelity design and analysis with computer models, Int. J. Uncertain. Quantif., 4, 1 (2014) · Zbl 07612593
[35] Zhou, Q.; Wang, Y.; Choi, S. K.; Jiang, P.; Shao, X.; Hu, J.; Shu, L., A robust optimization approach based on multi-fidelity metamodel, Struct. Multidiscip. Optim., 57, 2, 775-797 (2018)
[36] Ng, L. W.; Willcox, K. E., Multifidelity approaches for optimization under uncertainty, Int. J. Numer. Methods Eng., 100, 10, 746-772 (2014) · Zbl 1352.74230
[37] Chaudhuri, A.; Lam, R.; Willcox, K., Multifidelity uncertainty propagation via adaptive surrogates in coupled multidisciplinary systems, AIAA J., 56, 235-249 (2017)
[38] Zhu, X.; Linebarger, E. M.; Xiu, D., Multi-fidelity stochastic collocation method for computation of statistical moments, J. Comput. Phys., 341, 386-396 (2017) · Zbl 1378.65040
[39] Palar, P. S.; Tsuchiya, T.; Parks, G. T., Multi-fidelity non-intrusive polynomial chaos based on regression, Comput. Methods Appl. Mech. Eng., 305, 579-606 (2016) · Zbl 1423.76185
[40] Biehler, J.; Gee, M. W.; Wall, W. A., Towards efficient uncertainty quantification in complex and large-scale biomechanical problems based on a Bayesian multi-fidelity scheme, Biomech. Model. Mechanobiol., 14, 3, 489-513 (2015)
[41] Yang, Q.; Xu, C.; Xie, W.; Meng, S.; Jin, H., The damage-induced bi-modulus characteristic of c/sic materials and experimental validation, Ceram. Int., 43, 12 (2017)
[42] Yang, Q.; Han, X.; Xu, C.; Xie, W.; Meng, S., Development and validation of an anisotropic damage constitutive model for C/SiC composite, Ceram. Int., 44, 18, 22880-22889 (2018)
[43] Rappel, H.; Beex, L. A.A., Estimating fibres’ material parameter distributions from limited data with the help of Bayesian inference, Eur. J. Mech. A/Solids, 75, 169-196 (2019) · Zbl 1473.74005
[44] Hauseux, P.; Hale, J. S.; Cotin, S.; Bordas, S. P., Quantifying the uncertainty in a hyperelastic soft tissue model with stochastic parameters, Appl. Math. Model., 62, 86-102 (2018) · Zbl 1460.74065
[45] Rappel, H.; Beex, L. A.; Bordas, S. P., Bayesian inference to identify parameters in viscoelasticity, Mech. Time Depend. Mater., 22, 2, 221-258 (2018)
[46] Rappel, H.; Beex, L. A.A.; Noels, L.; Bordas, S. P.A., Identifying elastoplastic parameters with Bayes’ theorem considering output error, input error and model uncertainty, Probab. Eng. Mech., 55, 28-41 (2019)
[47] Rappel, H.; Beex, L. A.; Hale, J. S.; Noels, L.; Bordas, S. P.A., A tutorial on Bayesian inference to identify material parameters in solid mechanics, Arch.Comput. Methods Eng., 1-25 (2019)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.