×

Nonlinear dynamic analysis of thermally deformed beams subjected to uniform loading resting on nonlinear viscoelastic foundation. (English) Zbl 1490.74053

Summary: The purpose of this article is to examine the dynamic behavior of shear deformation beams subjected to high-speed thermal and mechanical loadings. The structure’s theoretical equations are derived by employing the first-order shear deformation theory and nonlinear strain-displacement relationships. Loading is accomplished in two different time stages. Initially, the beam is subjected to stress and strain due to fast surface heating. We explore the circumstances that result in dynamic bending or buckling. After that, the bent beam is abruptly exposed to consistent pressure over time. For this reason, two-parameter mechanical loading is proposed. The first parameter indicates the final loading amount, while the second specifies the loading rate. As a consequence of this load, heat-induced displacements are decreased. Additionally, it is investigated whether mechanical loading results in snap-through in the structure based on the Budiansky criterion. The transient heat conduction equation is solved analytically, and the temperature profile is obtained over time. The nonlinear dynamic partial differential equations are then solved by the Chebyshev collocation, Newmark, and Newton-Raphson numerical methods. Moreover, the effect of a nonlinear viscoelastic foundation on the beam response is examined in this research. After demonstrating validation, some novel outcomes are provided to characterize the system’s response in various situations.

MSC:

74H60 Dynamical bifurcation of solutions to dynamical problems in solid mechanics
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74F05 Thermal effects in solid mechanics
74H15 Numerical approximation of solutions of dynamical problems in solid mechanics
74D10 Nonlinear constitutive equations for materials with memory
74S99 Numerical and other methods in solid mechanics
Full Text: DOI

References:

[1] Abdelrahman, A. A.; Esen, I.; Eltaher, M. A., Vibration response of Timoshenko perforated microbeams under accelerating load and thermal environment, Appl. Math. Comput., 407, 126307 (2021) · Zbl 1510.74041
[2] Adam, C.; Heuer, R.; Raue, A.; Ziegler, F., Thermally induced vibrations of composite beams with interlayer slip, J. Therm. Stresses, 23, 747-772 (2000)
[3] Akbas, S. D., Dynamic responses of laminated beams under a moving load in thermal environment. Steel and Composite Structures, Int. J., 35, 729-737 (2020)
[4] Akbas, S. D.; Ersoy, H.; Akgöz, B.; Civalek, Ö., Dynamic analysis of a fiber-reinforced composite beam under a moving load by the Ritz method, Mathematics, 9, 1048 (2021)
[5] Akgöz, B.; Civalek, Ö., A size-dependent shear deformation beam model based on the strain gradient elasticity theory, Int. J. Eng. Sci., 70, 1-14 (2013) · Zbl 1423.74452
[6] Akgöz, B.; Civalek, Ö., Thermo-mechanical buckling behavior of functionally graded microbeams embedded in elastic medium, Int. J. Eng. Sci., 85, 90-104 (2014)
[7] Akgöz, B.; Civalek, Ö., Bending analysis of embedded carbon nanotubes resting on an elastic foundation using strain gradient theory, Acta Astronaut., 119, 1-12 (2016)
[8] Al-Huniti, N. S.; Alahmad, S. T., Transient thermo-mechanical response of a functionally graded beam under the effect of a moving heat source, Adv. Mater. Res., 6, 27 (2017)
[9] Alipour, M.; Torabi, M. A.; Sareban, M.; Lashini, H.; Sadeghi, E.; Fazaeli, A., Finite element and experimental method for analyzing the effects of martensite morphologies on the formability of DP steels, Mech. Base. Des. Struct. Mach., 48, 525-541 (2020)
[10] Ansari, R.; Pourashraf, T.; Gholami, R., An exact solution for the nonlinear forced vibration of functionally graded nanobeams in thermal environment based on surface elasticity theory, Thin-Walled Struct., 93, 169-176 (2015)
[11] Ansari, R.; Shojaei, M. F.; Rouhi, H., Small-scale Timoshenko beam element, Eur. J. Mech. Solid., 53, 19-33 (2015) · Zbl 1406.74368
[12] Arvin, H.; Sadighi, M.; Ohadi, A., A numerical study of free and forced vibration of composite sandwich beam with viscoelastic core, Compos. Struct., 92, 996-1008 (2010)
[13] Boley, B. A., Thermally induced vibrations of beams, J. Aeronaut. Sci., 23, 179-181 (1956) · Zbl 0070.18906
[14] Boley, B.; Barber, A., Dynamic Response of Beams and Plates to Rapid Heating (1957) · Zbl 0078.38407
[15] Bruch, J.; Adali, S.; Sadek, I.; Sloss, J., Structural control of thermoelastic beams for vibration suppression, J. Therm. Stresses, 16, 249-263 (1993)
[16] Chen, Y.-H.; Huang, Y.-H.; Shih, C.-T., Response of an infinite Timoshenko beam on a viscoelastic foundation to a harmonic moving load, J. Sound Vib., 241, 809-824 (2001)
[17] Chen, F.; Chen, J.; Duan, R.; Habibi, M.; Khadimallah, M. A., Investigation on dynamic stability and aeroelastic characteristics of composite curved pipes with any yawed angle, Compos. Struct., 115195 (2022)
[18] Cifuentes, A. O., Dynamic response of a beam excited by a moving mass, Finite Elem. Anal. Des., 5, 237-246 (1989) · Zbl 0711.73242
[19] Doeva, O.; Masjedi, P. K.; Weaver, P. M., Static deflection of fully coupled composite Timoshenko beams: an exact analytical solution, Eur. J. Mech. Solid., 81, 103975 (2020) · Zbl 1475.74076
[20] Dong, T.; Zhang, W.; Liu, Y., Dynamic snap-through phenomena and nonlinear vibrations of bistable asymmetric cross-ply composite-laminated square plates with two potential wells under center base excitation, Eur. Phys. J. Spec. Top., 1-11 (2021)
[21] Ebrahimi, F.; Habibi, M.; Safarpour, H., On modeling of wave propagation in a thermally affected GNP-reinforced imperfect nanocomposite shell, Eng. Comput., 35, 1375-1389 (2019)
[22] Ebrahimi, F.; Hashemabadi, D.; Habibi, M.; Safarpour, H., Thermal buckling and forced vibration characteristics of a porous GNP reinforced nanocomposite cylindrical shell, Microsyst. Technol., 26, 461-473 (2020)
[23] Emam, S.; Lacarbonara, W., A review on buckling and postbuckling of thin elastic beams, Eur. J. Mech. Solid., 92, 104449 (2022) · Zbl 1508.74016
[24] Esen, I., Dynamic response of a functionally graded Timoshenko beam on two-parameter elastic foundations due to a variable velocity moving mass, Int. J. Mech. Sci., 153, 21-35 (2019)
[25] Esen, I., Dynamic response of functional graded Timoshenko beams in a thermal environment subjected to an accelerating load, Eur. J. Mech. Solid., 78, 103841 (2019) · Zbl 1483.74037
[26] Esen, I.; Koc, M. A.; Cay, Y., Finite element formulation and analysis of a functionally graded Timoshenko beam subjected to an accelerating mass including inertial effects of the mass, Lat. Am. J. Solid. Struct., 15 (2018)
[27] Esen, I.; Özarpa, C.; Eltaher, M. A., Free vibration of a cracked FG microbeam embedded in an elastic matrix and exposed to magnetic field in a thermal environment, Compos. Struct., 261, 113552 (2021)
[28] Esen, I.; Eltaher, M. A.; Abdelrahman, A. A., Vibration response of symmetric and sigmoid functionally graded beam rested on elastic foundation under moving point mass, Mech. Base. Des. Struct. Mach., 1-25 (2021)
[29] Esen, I.; Abdelrhmaan, A. A.; Eltaher, M. A., Free vibration and buckling stability of FG nanobeams exposed to magnetic and thermal fields, Eng. Comput., 1-20 (2021)
[30] Esmailpoor Hajilak, Z.; Pourghader, J.; Hashemabadi, D.; Sharifi Bagh, F.; Habibi, M.; Safarpour, H., Multilayer GPLRC composite cylindrical nanoshell using modified strain gradient theory, Mech. Base. Des. Struct. Mach., 47, 521-545 (2019)
[31] Faghih Shojaei, M.; Ansari, R.; Mohammadi, V.; Rouhi, H., Nonlinear forced vibration analysis of postbuckled beams, Arch. Appl. Mech., 84, 421-440 (2014) · Zbl 1367.74019
[32] Gao, Y.; Xiao, W-s; Zhu, H., Snap-buckling of functionally graded multilayer graphene platelet-reinforced composite curved nanobeams with geometrical imperfections, Eur. J. Mech. Solid., 82, 103993 (2020) · Zbl 1475.74040
[33] Ghiasian, S.; Kiani, Y.; Eslami, M., Non-linear rapid heating of FGM beams, Int. J. Non Lin. Mech., 67, 74-84 (2014)
[34] Gholami, R.; Ansari, R.; Gholami, Y., Nonlinear resonant dynamics of geometrically imperfect higher-order shear deformable functionally graded carbon-nanotube reinforced composite beams, Compos. Struct., 174, 45-58 (2017)
[35] Habibi, M.; Hashemi, R.; Sadeghi, E.; Fazaeli, A.; Ghazanfari, A.; Lashini, H., Enhancing the mechanical properties and formability of low carbon steel with dual-phase microstructures, J. Mater. Eng. Perform., 25, 382-389 (2016)
[36] Habibi, M.; Hashemi, R.; Tafti, M. F.; Assempour, A., Experimental investigation of mechanical properties, formability and forming limit diagrams for tailor-welded blanks produced by friction stir welding, J. Manuf. Process., 31, 310-323 (2018)
[37] Habibi, M.; Hashemi, R.; Ghazanfari, A.; Naghdabadi, R.; Assempour, A., Forming limit diagrams by including the M-K model in finite element simulation considering the effect of bending, Proc. IME J. Mater. Des. Appl., 232, 625-636 (2018)
[38] Habibi, M.; Mohammadi, A.; Safarpour, H.; Shavalipour, A.; Ghadiri, M., Wave propagation analysis of the laminated cylindrical nanoshell coupled with a piezoelectric actuator, Mech. Base. Des. Struct. Mach., 1-19 (2019)
[39] Habibi, M.; Mohammadgholiha, M.; Safarpour, H., Wave propagation characteristics of the electrically GNP-reinforced nanocomposite cylindrical shell, J. Braz. Soc. Mech. Sci. Eng., 41, 221 (2019)
[40] Habibi, M.; Taghdir, A.; Safarpour, H., Stability analysis of an electrically cylindrical nanoshell reinforced with graphene nanoplatelets, Compos. B Eng., 175, 107125 (2019)
[41] Habibi, M.; Hashemabadi, D.; Safarpour, H., Vibration analysis of a high-speed rotating GPLRC nanostructure coupled with a piezoelectric actuator, Euro. Phys. J. Plus, 134, 307 (2019)
[42] Hetnarski, R. B.; Eslami, M. R.; Gladwell, G., Thermal Stresses: Advanced Theory and Applications (2009), Springer · Zbl 1165.74004
[43] Hino, J.; Yoshimura, T.; Ananthanarayana, N., Vibration analysis of non-linear beams subjected to a moving load using the finite element method, J. Sound Vib., 100, 477-491 (1985)
[44] Hou, F.; Wu, S.; Moradi, Z.; Shafiei, N., The computational modeling for the static analysis of axially functionally graded micro-cylindrical imperfect beam applying the computer simulation, Eng. Comput., 1-19 (2021)
[45] Huang, X.; Zhang, Y.; Moradi, Z.; Shafiei, N., Computer simulation via a couple of homotopy perturbation methods and the generalized differential quadrature method for nonlinear vibration of functionally graded non-uniform micro-tube, Eng. Comput., 1-18 (2021)
[46] Huang, X.; Zhu, Y.; Vafaei, P.; Moradi, Z.; Davoudi, M., An iterative simulation algorithm for large oscillation of the applicable 2D-electrical system on a complex nonlinear substrate, Eng. Comput. (2021)
[47] İsmail, E.; Koç, M. A.; Eroğlu, M., Dynamic behaviour of functionally graded Timoshenko beams on a four parameter linear elastic foundation due to a high speed travelling mass with variable velocities, J. Smart Syst. Res., 2, 48-75 (2021)
[48] Javani, M.; Kiani, Y.; Eslami, M., Geometrically nonlinear rapid surface heating of temperature-dependent FGM arches, Aero. Sci. Technol., 90, 264-274 (2019) · Zbl 1428.74094
[49] Javani, M.; Kiani, Y.; Eslami, M. R., Large amplitude thermally induced vibrations of temperature dependent annular FGM plates, Compos. B Eng., 163, 371-383 (2019)
[50] Javani, M.; Kiani, Y.; Eslami, M., Thermal buckling of FG graphene platelet reinforced composite annular sector plates, Thin-Walled Struct., 148, 106589 (2020)
[51] Javani, M.; Kiani, Y.; Eslami, M., Dynamic snap-through of shallow spherical shells subjected to thermal shock, Int. J. Pres. Ves. Pip., 179, 104028 (2020)
[52] Jiao, J.; Ghoreishi, S-m; Moradi, Z.; Oslub, K., Coupled particle swarm optimization method with genetic algorithm for the static-dynamic performance of the magneto-electro-elastic nanosystem, Eng. Comput. (2021)
[53] Kiani, Y.; Eslami, M., Nonlinear generalized thermoelasticity of an isotropic layer based on Lord-Shulman theory, Eur. J. Mech. Solid., 61, 245-253 (2017) · Zbl 1406.74181
[54] Kidawa-Kukla, J., Application of the Green functions to the problem of the thermally induced vibration of a beam, J. Sound Vib., 262, 865-876 (2003) · Zbl 1133.80005
[55] Lee, H., Dynamic response of a Timoshenko beam on a Winkler foundation subjected to a moving mass, Appl. Acoust., 55, 203-215 (1998)
[56] Liu, Y.; Wang, W.; He, T.; Moradi, Z.; Larco Benítez, M. A., On the modelling of the vibration behaviors via discrete singular convolution method for a high-order sector annular system, Eng. Comput., 1-23 (2021)
[57] Luo, J.; Song, J.; Moradi, Z.; Safa, M.; Khadimallah, M. A., Effect of simultaneous compressive and inertia loads on the bifurcation stability of shear deformable functionally graded annular fabrications reinforced with graphenes, Eur. J. Mech. Solid., 104581 (2022) · Zbl 1493.74031
[58] Ma L, Liu X, Moradi Z. On the chaotic behavior of graphene-reinforced annular systems under harmonic excitation. Eng. Comput..1-25.
[59] Malekzadeh, P.; Shojaee, A., Dynamic response of functionally graded beams under moving heat source, J. Vib. Control, 20, 803-814 (2014) · Zbl 1371.74173
[60] Malik, P.; Kadoli, R., Thermo-elastic response of SUS316-Al2O3 functionally graded beams under various heat loads, Int. J. Mech. Sci., 128, 206-223 (2017)
[61] Malik, P.; Kadoli, R., Thermal induced motion of functionally graded beams subjected to surface heating, Ain Shams Eng. J., 9, 149-160 (2018)
[62] Manolis, G.; Beskos, D., Thermally induced vibrations of beam structures, Comput. Methods Appl. Mech. Eng., 21, 337-355 (1980) · Zbl 0422.73059
[63] Mao, X.-Y.; Ding, H.; Chen, L.-Q., Forced vibration of axially moving beam with internal resonance in the supercritical regime, Int. J. Mech. Sci., 131, 81-94 (2017)
[64] Masjedi, P. K.; Maheri, A., Chebyshev collocation method for the free vibration analysis of geometrically exact beams with fully intrinsic formulation, Eur. J. Mech. Solid., 66, 329-340 (2017) · Zbl 1406.74304
[65] Mead, D.; Markus, S., The forced vibration of a three-layer, damped sandwich beam with arbitrary boundary conditions, J. Sound Vib., 10, 163-175 (1969) · Zbl 0195.26903
[66] Moradi, Z.; Davoudi, M.; Ebrahimi, F.; Ehyaei, A. F., Intelligent Wave Dispersion Control of an Inhomogeneous Micro-shell Using a Proportional-Derivative Smart Controller, 1-24 (2021), Waves in Random and Complex Media
[67] Numanoğlu, H. M.; Ersoy, H.; Akgöz, B.; Civalek, Ö., A new eigenvalue problem solver for thermo-mechanical vibration of Timoshenko nanobeams by an innovative nonlocal finite element method, Math. Methods Appl. Sci., 45, 2592-2614 (2022) · Zbl 1538.74068
[68] Obara, P., Vibrations and Stability of Bernoulli-Euler and Timoshenko Beams on Two-Parameter Elastic Foundation, 60 (2014), Archives of Civil Engineering
[69] Pourjabari, A.; Hajilak, Z. E.; Mohammadi, A.; Habibi, M.; Safarpour, H., Effect of porosity on free and forced vibration characteristics of the GPL reinforcement composite nanostructures, Comput. Math. Appl., 77, 2608-2626 (2019) · Zbl 1442.74084
[70] Şimşek, M., Non-linear vibration analysis of a functionally graded Timoshenko beam under action of a moving harmonic load, Compos. Struct., 92, 2532-2546 (2010)
[71] Safarpour, H.; Hajilak, Z. E.; Habibi, M., A size-dependent exact theory for thermal buckling, free and forced vibration analysis of temperature dependent FG multilayer GPLRC composite nanostructures restring on elastic foundation, Int. J. Mech. Mater. Des., 15, 569-583 (2019)
[72] Safarpour, H.; Pourghader, J.; Habibi, M., Influence of spring-mass systems on frequency behavior and critical voltage of a high-speed rotating cantilever cylindrical three-dimensional shell coupled with piezoelectric actuator, J. Vib. Control, 25, 1543-1557 (2019)
[73] Sheng, G.; Wang, X., Nonlinear vibration of FG beams subjected to parametric and external excitations, Eur. J. Mech. Solid., 71, 224-234 (2018) · Zbl 1406.74327
[74] Venkataramana, J.; Jana, M., Thermally forced vibrations of beams, J. Sound Vib., 37, 291-295 (1974) · Zbl 0288.73044
[75] Wang, R.-T.; Chou, T.-H., Non-linear vibration of Timoshenko beam due to a moving force and the weight of beam, J. Sound Vib., 218, 117-131 (1998) · Zbl 1235.74200
[76] Wattanasakulpong, N.; Chaikittiratana, A., Flexural vibration of imperfect functionally graded beams based on Timoshenko beam theory: Chebyshev collocation method, Meccanica, 50, 1331-1342 (2015) · Zbl 1314.74034
[77] Wu, J.-S.; Dai, C.-W., Dynamic responses of multispan nonuniform beam due to moving loads, J. Struct. Eng., 113, 458-474 (1987)
[78] Wu, M.; Zhang, W.; Niu, Y., Experimental and numerical studies on nonlinear vibrations and dynamic snap-through phenomena of bistable asymmetric composite laminated shallow shell under center foundation excitation, Eur. J. Mech. Solid., 89, 104303 (2021) · Zbl 1494.74032
[79] Xu, X.-J.; Deng, Z.-C., Closed-form frequency solutions for simplified strain gradient beams with higher-order inertia, Eur. J. Mech. Solid., 56, 59-72 (2016) · Zbl 1406.74414
[80] Xu, W.; Pan, G.; Moradi, Z.; Shafiei, N., Nonlinear forced vibration analysis of functionally graded non-uniform cylindrical microbeams applying the semi-analytical solution, Compos. Struct., 114395 (2021)
[81] Yas, M.; Heshmati, M., Dynamic analysis of functionally graded nanocomposite beams reinforced by randomly oriented carbon nanotube under the action of moving load, Appl. Math. Model., 36, 1371-1394 (2012) · Zbl 1243.74098
[82] Yu, X.; Maalla, A.; Moradi, Z., Electroelastic high-order computational continuum strategy for critical voltage and frequency of piezoelectric NEMS via modified multi-physical couple stress theory, Mech. Syst. Signal Process., 165, 108373 (2022)
[83] Zhang, W.; Li, S., Resonant chaotic motions of a buckled rectangular thin plate with parametrically and externally excitations, Nonlinear Dynam., 62, 673-686 (2010) · Zbl 1209.74025
[84] Zhang, J.; Zhang, W., An extended high-dimensional Melnikov analysis for global and chaotic dynamics of a non-autonomous rectangular buckled thin plate, Sci. China Phys. Mech. Astron., 55, 1679-1690 (2012)
[85] Zhang, J.; Xiang, Z.; Liu, Y.; Xue, M., Stability of thermally induced vibration of a beam subjected to solar heating, AIAA J., 52, 660-665 (2014)
[86] Zhang, W.; Liu, Y.; Wu, M., Theory and experiment of nonlinear vibrations and dynamic snap-through phenomena for bi-stable asymmetric laminated composite square panels under foundation excitation, Compos. Struct., 225, 111140 (2019)
[87] Zhang, W.; Ma, W.; Zhang, Y.; Liu, Y., Double excitation multi-stability and multi-pulse chaotic vibrations of a bistable asymmetric laminated composite square panels under foundation force, Chaos: Interdisciplin. J. Nonlinear Sci., 30, Article 083105 pp. (2020) · Zbl 1445.74029
[88] Zhang, W.; Wu, Q.; Zhang, Y.; Zheng, Y., Coexistence of bistable multi-pulse chaotic motions with large amplitude vibrations in buckled sandwich plate under transverse and in-plane excitations, Chaos: Interdisciplin. J. Nonlinear Sci., 30, Article 043121 pp. (2020) · Zbl 1437.74008
[89] Zhao Y, Moradi Z, Davoudi M, Zhuang J. Bending and stress responses of the hybrid axisymmetric system via state-space method and 3D-elasticity theory. Eng. Comput..1-23.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.