×

SRB measures for higher dimensional singular partially hyperbolic attractors. (Mesures SRB pour des attracteurs partiellement hyperboliques avec singularité(s) en dimension finie quelconque.) (English. French summary) Zbl 1403.37041

Summary: We prove the existence and the uniqueness of the SRB measure for any singular hyperbolic attractor in dimension \(d \geq 3\). The proof does not use Poincaré sectional maps, but uses basic properties of thermodynamical formalism.

MSC:

37D35 Thermodynamic formalism, variational principles, equilibrium states for dynamical systems
37A35 Entropy and other invariants, isomorphism, classification in ergodic theory
37A60 Dynamical aspects of statistical mechanics
37D20 Uniformly hyperbolic systems (expanding, Anosov, Axiom A, etc.)
47N10 Applications of operator theory in optimization, convex analysis, mathematical programming, economics

References:

[1] Vítor Araújo, Maria José Pacifico, Enrique Ramiro Pujals & Marcelo Viana, “Singular-hyperbolic attractors are chaotic”, Trans. Am. Math. Soc.361 (2009) no. 5, p. 2431-2485 · Zbl 1214.37010 · doi:10.1090/S0002-9947-08-04595-9
[2] Aubin Arroyo & Enrique R. Pujals, “Dynamical properties of singular-hyperbolic attractors”, Discrete Contin. Dyn. Syst.19 (2007) no. 1, p. 67-87 · Zbl 1200.37021 · doi:10.3934/dcds.2007.19.67
[3] Rufus Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lecture Notes in Mathematics 470, Springer, 2008 · Zbl 1172.37001
[4] Rufus Bowen & David Ruelle, “The ergodic theory of Axiom A flows”, Invent. Math.29 (1975) no. 3, p. 181-202 · Zbl 0311.58010 · doi:10.1007/BF01389848
[5] Jérôme Buzzi, “No or infinitely many a.c.i.p. for piecewise expanding \(C^r\) maps in higher dimensions”, Commun. Math. Phys.222 (2001) no. 3, p. 495-501 · Zbl 1001.37003 · doi:10.1007/s002200100509
[6] W. Colmenárez, SRB measures for singular hyperbolic attractors, Ph. D. Thesis, Universidade Federal do Rio de Janeiro (Brazil), 2002
[7] William Cowieson & Lai-Sang Young, “SRB measures as zero-noise limits”, Ergodic Theory Dyn. Syst.25 (2005) no. 4, p. 1115-1138 · Zbl 1098.37020 · doi:10.1017/S0143385704000604
[8] Sylvain Crovisier & Rafael Potrie, “Introduction to partially hyperbolic dynamics”, , 2015
[9] Morris W. Hirsch, Charles Chapman Pugh & Michael Shub, Invariant manifolds, Lecture Notes in Mathematics 583, Springer, 1977 · Zbl 0355.58009
[10] Anatole Katok & Boris Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its Applications 54, Cambridge University Press, 1995, With a supplementary chapter by Katok and Leonardo Mendoza · Zbl 0878.58020 · doi:10.1017/CBO9780511809187
[11] François Ledrappier, “Propriétés ergodiques des mesures de Sinaï”, Publ. Math., Inst. Hautes Étud. Sci. (1984) no. 59, p. 163-188 · Zbl 0561.58037 · doi:10.1007/BF02698772
[12] François Ledrappier & Lai-Sang Young, “The metric entropy of diffeomorphisms. I. Characterization of measures satisfying Pesin’s entropy formula”, Ann. Math.122 (1985) no. 3, p. 509-539 · Zbl 0605.58028 · doi:10.2307/1971328
[13] Edward N. Lorenz, “Deterministic non-periodic flow”, J. Atmospheric Sci.20 (1963), p. 130-141 · Zbl 1417.37129 · doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
[14] Jerrold Eldon Marsden & Marjorie F. McCracken, The Hopf bifurcation and its applications, Applied Mathematical Sciences 19, Springer-Verlag, New York, 1976 · Zbl 0346.58007
[15] Roger J. Metzger & Carlos Arnoldo Morales, “Sectional-hyperbolic systems”, Ergodic Theory Dyn. Syst.28 (2008) no. 5, p. 1587-1597 · Zbl 1165.37010 · doi:10.1017/S0143385707000995
[16] Carlos Arnoldo Morales, Maria José Pacifico & Enrique Ramiro Pujals, “Robust transitive singular sets for 3-flows are partially hyperbolic attractors or repellers”, Ann. Math.160 (2004) no. 2, p. 375-432 · Zbl 1071.37022 · doi:10.4007/annals.2004.160.375
[17] Yakov B. Pesin, Lectures on partial hyperbolicity and stable ergodicity, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), 2004 · Zbl 1098.37024 · doi:10.4171/003
[18] Hao Qiu, “Existence and uniqueness of SRB measure on \(C^1\) generic hyperbolic attractors”, Commun. Math. Phys.302 (2011) no. 2, p. 345-357 · Zbl 1214.37018 · doi:10.1007/s00220-010-1160-2
[19] David Ruelle, “A measure associated with axiom-A attractors”, Am. J. Math.98 (1976) no. 3, p. 619-654 · Zbl 0355.58010 · doi:10.2307/2373810
[20] Yakov Grigor?evich Sinaĭ, “Gibbs measures in ergodic theory”, Usp. Mat. Nauk27 (1972) no. 4(166), p. 21-64 · Zbl 0246.28008
[21] Masato Tsujii, “Piecewise expanding maps on the plane with singular ergodic properties”, Ergodic Theory Dyn. Syst.20 (2000) no. 6, p. 1851-1857 · Zbl 0992.37018 · doi:10.1017/S0143385700001012
[22] Peter Walters, An introduction to ergodic theory, Graduate Texts in Mathematics 79, Springer, 1982 · Zbl 0475.28009
[23] Jiangang Yang, “”, Online video,
[24] Jiangang Yang, “Topological entropy of Lorenz-like flows”, , 2014
[25] Lai-Sang Young, “What are SRB measures, and which dynamical systems have them?”, J. Stat. Phys.108 (2002) no. 5-6, p. 733-754, Dedicated to David Ruelle and Yasha Sinai on the occasion of their 65th birthdays · Zbl 1124.37307 · doi:10.1023/A:1019762724717
[26] Shengzhi Zhu, Shaobo Gan & Lan Wen, “Indices of singularities of robustly transitive sets”, Discrete Contin. Dyn. Syst.21 (2008) no. 3, p. 945-957 © Annales de L’Institut Fourier - ISSN (électronique) : 1777-5310 · Zbl 1148.37020 · doi:10.3934/dcds.2008.21.945
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.