×

A linearly conforming radial point interpolation method for solid mechanics problems. (English) Zbl 1198.74120

Summary: A linearly conforming radial point interpolation method (LC-RPIM) is presented for stress analysis of two-dimensional solids. In the LC-RPIM method, each field node is enclosed by a Voronoi polygon, and the displacement field function is approximated using RPIM shape functions of Kronecker delta function property created by simple interpolation using local nodes and radial basis functions augmented with linear polynomials to guarantee linear consistency. The system equations are then derived using the Galerkin weak form and nodal integration techniques, and the essential boundary conditions are imposed directly as in the finite element method. The LC-RPIM method is verified via various numerical examples and an extensive comparison study is conducted with the conventional RPIM, analytical approach and FEM. It is found that the presented LC-RPIM is more stable, more accurate in stress and more efficient than the conventional RPIM.

MSC:

74S30 Other numerical methods in solid mechanics (MSC2010)
Full Text: DOI

References:

[1] DOI: 10.1007/s004660050346 · Zbl 0932.76067 · doi:10.1007/s004660050346
[2] DOI: 10.1007/s004660050456 · Zbl 0968.74079 · doi:10.1007/s004660050456
[3] DOI: 10.1002/nme.1620370205 · Zbl 0796.73077 · doi:10.1002/nme.1620370205
[4] Belytschko T., Comput. Methods Appl. Mech. Eng. 137 pp 3–
[5] Bonet J., Appl. Math. Comput. 126 pp 133–
[6] DOI: 10.1002/1097-0207(20010120)50:2<435::AID-NME32>3.0.CO;2-A · Zbl 1011.74081 · doi:10.1002/1097-0207(20010120)50:2<435::AID-NME32>3.0.CO;2-A
[7] DOI: 10.1002/nme.338 · Zbl 1098.74732 · doi:10.1002/nme.338
[8] DOI: 10.1093/mnras/181.3.375 · Zbl 0421.76032 · doi:10.1093/mnras/181.3.375
[9] DOI: 10.1016/S0955-7997(96)00033-1 · doi:10.1016/S0955-7997(96)00033-1
[10] DOI: 10.1002/fld.1650200824 · Zbl 0881.76072 · doi:10.1002/fld.1650200824
[11] DOI: 10.1002/1097-0207(20010210)50:4<937::AID-NME62>3.0.CO;2-X · Zbl 1050.74057 · doi:10.1002/1097-0207(20010210)50:4<937::AID-NME62>3.0.CO;2-X
[12] Liu G. R., Meshfree Methods, Moving Beyond the Finite Element Method (2003)
[13] Liu G. R., An Introduction to Meshfree Methods and Their Programming (2005)
[14] Lucy L. B., Astro. J. 88 pp 1013–
[15] Lu Y., Comput. Methods Appl. Mech. Eng. 133 pp 397–
[16] DOI: 10.1016/S0045-7825(96)01090-0 · Zbl 0896.73075 · doi:10.1016/S0045-7825(96)01090-0
[17] Timoshenko S. P., Theory of Elasticity (1970) · Zbl 0266.73008
[18] DOI: 10.1016/S0045-7825(01)00419-4 · Zbl 1065.74074 · doi:10.1016/S0045-7825(01)00419-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.