×

Three-color continuous-variable entanglement directly produced in an optical superlattice. (English) Zbl 1167.81361

Summary: The three-color continuous-variable entanglement directly produced by a cascaded nonlinear process in an optical superlattice was investigated theoretically. This cascaded nonlinear process can be realized by using quasi-phase-matching technique in a quasiperiodic superlattice. In the first step, signal- and idle-beams can be generated by a parametric down-conversion. Then, the third beam can be obtained through sum-frequency of idle and pump. The degree of quadrature phase amplitude correlations between the three modes was discussed by a sufficient inseparability criterion with a single inequality for continuous-variable entanglement.

MSC:

81P68 Quantum computation
81V80 Quantum optics
Full Text: DOI

References:

[1] DOI: 10.1103/RevModPhys.77.513 · Zbl 1205.81010 · doi:10.1103/RevModPhys.77.513
[2] DOI: 10.1103/PhysRevLett.68.3663 · doi:10.1103/PhysRevLett.68.3663
[3] DOI: 10.1103/PhysRevLett.60.2731 · doi:10.1103/PhysRevLett.60.2731
[4] DOI: 10.1103/PhysRevLett.95.243603 · doi:10.1103/PhysRevLett.95.243603
[5] DOI: 10.1103/PhysRevA.49.1473 · doi:10.1103/PhysRevA.49.1473
[6] DOI: 10.1103/PhysRevLett.80.869 · doi:10.1103/PhysRevLett.80.869
[7] DOI: 10.1103/PhysRevLett.81.5668 · doi:10.1103/PhysRevLett.81.5668
[8] DOI: 10.1126/science.282.5389.706 · doi:10.1126/science.282.5389.706
[9] DOI: 10.1103/PhysRevLett.80.869 · doi:10.1103/PhysRevLett.80.869
[10] DOI: 10.1103/PhysRevLett.88.047904 · doi:10.1103/PhysRevLett.88.047904
[11] DOI: 10.1038/27850 · doi:10.1038/27850
[12] DOI: 10.1103/PhysRevLett.80.4084 · doi:10.1103/PhysRevLett.80.4084
[13] DOI: 10.1103/PhysRevLett.80.4088 · doi:10.1103/PhysRevLett.80.4088
[14] DOI: 10.1103/PhysRevLett.83.2095 · Zbl 1031.81512 · doi:10.1103/PhysRevLett.83.2095
[15] DOI: 10.1103/PhysRevLett.93.250503 · doi:10.1103/PhysRevLett.93.250503
[16] DOI: 10.1103/PhysRevLett.82.1784 · Zbl 0947.81015 · doi:10.1103/PhysRevLett.82.1784
[17] DOI: 10.1103/PhysRevLett.84.3482 · doi:10.1103/PhysRevLett.84.3482
[18] DOI: 10.1103/PhysRevLett.91.080404 · doi:10.1103/PhysRevLett.91.080404
[19] DOI: 10.1103/PhysRevA.64.052303 · doi:10.1103/PhysRevA.64.052303
[20] DOI: 10.1088/0953-4075/39/1/011 · doi:10.1088/0953-4075/39/1/011
[21] DOI: 10.1103/PhysRevA.71.034305 · doi:10.1103/PhysRevA.71.034305
[22] DOI: 10.1103/PhysRevA.74.042332 · doi:10.1103/PhysRevA.74.042332
[23] DOI: 10.1103/PhysRevA.70.020302 · doi:10.1103/PhysRevA.70.020302
[24] DOI: 10.1103/PhysRevA.72.053805 · doi:10.1103/PhysRevA.72.053805
[25] DOI: 10.1103/PhysRevA.77.032317 · doi:10.1103/PhysRevA.77.032317
[26] DOI: 10.1103/PhysRevLett.97.140504 · doi:10.1103/PhysRevLett.97.140504
[27] DOI: 10.1103/PhysRevA.67.052315 · doi:10.1103/PhysRevA.67.052315
[28] DOI: 10.1126/science.278.5339.843 · doi:10.1126/science.278.5339.843
[29] DOI: 10.1103/PhysRevLett.78.2752 · doi:10.1103/PhysRevLett.78.2752
[30] DOI: 10.1063/1.1502007 · doi:10.1063/1.1502007
[31] DOI: 10.1103/PhysRevA.30.1386 · doi:10.1103/PhysRevA.30.1386
[32] DOI: 10.1364/JOSAB.21.001241 · doi:10.1364/JOSAB.21.001241
[33] DOI: 10.1007/BF00325015 · doi:10.1007/BF00325015
[34] DOI: 10.1103/PhysRevA.31.3761 · doi:10.1103/PhysRevA.31.3761
[35] DOI: 10.1103/PhysRevLett.84.2722 · doi:10.1103/PhysRevLett.84.2722
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.