×

On the wrinkling and restabilization of highly stretched sheets. (English) Zbl 1425.74309

Summary: Wrinkles are commonly observed in uniaxially stretched rectangular sheets with clamped-clamped boundaries, and can disappear upon excess stretching. Here we explore this wrinkling and restabilization behavior both analytically and numerically. We find that Poisson’s ratio plays a crucial role in the wrinkling and restabilization behavior. Smaller Poisson’s ratio makes later onset of wrinkling, lower amplitude and earlier disappearance of wrinkles. In particular, when Poisson’s ratio is below a threshold, no wrinkles occur, which can be explained by the decreasing transverse compressive stresses with respect to the reducing Poisson’s ratio. Furthermore, based on the Koiter stability theory, we have semi-analytically predicted isola-center bifurcation points, through looking into the sign change of the quadratic terms of potential energy. Both theoretical buckling and restabilization points are in agreement with finite element results. Lastly, a 3D phase diagram on stability boundaries is provided and we find that when the aspect ratio is beyond a threshold, wrinkles may not occur in the center but are split into two packets near the stretching ends.

MSC:

74K35 Thin films
74G60 Bifurcation and buckling
74K20 Plates

Software:

ABAQUS
Full Text: DOI

References:

[1] ABAQUS (2013). ABAQUS analysis user’s manual, version 6.13.; ABAQUS (2013). ABAQUS analysis user’s manual, version 6.13.
[2] Abdelkhalek, S.; Zahrouni, H.; Legrand, N.; Potier-Ferry, M., Post-buckling modeling for strips under tension and residual stresses using asymptotic numerical method, International Journal of Mechanical Sciences, 104, 126-137 (2015)
[3] Alioli, M.; Masarati, P.; Morandini, M.; Albertani, R.; Carpenter, T., Modeling effects of membrane tension on dynamic stall for thin membrane wings, Aerospace Science and Technology, 69, 419-431 (2017)
[4] Attipou, K.; Hu, H.; Mohri, F.; Potier-Ferry, M.; Belouettar, S., Thermal wrinkling of thin membranes using a fourier-related double scale approach, Thin-Walled Structures, 94, 532-544 (2015)
[5] Cerda, E.; Mahadevan, L., Geometry and physics of wrinkling, Physical Review Letters, 90 (2003)
[6] Cerda, E.; Ravi-Chandar, K.; Mahadevan, L., Wrinkling of an elastic sheet under tension, Nature, 419, 579-580 (2002)
[7] Chen, Y.; Li, T.; Scarpa, F.; Wang, L., Lattice metamaterials with mechanically tunable poisson’s ratio for vibration control, Physical Review Letters, 7 (2017)
[8] Dai, H. H.; Song, Z., On a consistent finite-strain plate theory based on three-dimensional energy principle, Proceedings of the Royal Society A, 470 (2014)
[9] Destrade, M.; Fu, Y.; Nobili, A., Edge wrinkling in elastically supported pre-stressed incompressible isotropic plates, Proceedings of the Royal Society A, 472 (2016) · Zbl 1371.74191
[10] Elsabbagh, A., Nonlinear finite element model for the analysis of axisymmetric inflatable beams, Thin-Walled Structures, 96, 307-313 (2015)
[11] Fischer, F. D.; Rammerstorfer, F. G.; Friedl, N.; Wieser, W., Buckling phenomena related to rolling and levelling of sheet metal, International Journal of Mechanical Sciences, 42, 1887-1910 (2000) · Zbl 0969.74023
[12] Friedl, N.; Rammerstorfer, F. G.; Fischer, F. D., Buckling of stretched strips, Computers & Structures, 78, 185-190 (2000)
[13] Fu, B.; Sperber, E.; Eke, F., Solar sail technology-A state of the art review, Progress in Aerospace Sciences, 86, 1-19 (2016)
[14] Fu, C.; Wang, T.; Xu, F.; Huo, Y.; Potier-Ferry, M., A modeling and resolution framework for wrinkling in hyperelastic sheets at finite membrane strain, Journal of the Mechanics and Physics of Solids, 124, 446-470 (2019)
[15] Healey, T. J.; Li, Q.; Cheng, R. B., Wrinkling behavior of highly stretched rectangular elastic films via parametric global bifurcation, Journal of Nonlinear Science, 23, 777-805 (2013) · Zbl 1292.35034
[16] van der Heijden, A. M.A., W.T. Koiter’s elastic stability of solids and structures (2009), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1163.74001
[17] Jacques, N.; Potier-Ferry, M., On mode localisation in tensile plate buckling, Comptes Rendus Mecanique, 333, 804-809 (2005) · Zbl 1177.74170
[18] Kim, T. Y.; Puntel, E.; Fried, E., Numerical study of the wrinkling of a stretched thin sheet, International Journal of Solids and Structures, 49, 771-782 (2012)
[19] Koiter, W. T., On the stability of elastic equilibrium (1945), Delft University of Technology.: Delft University of Technology. Netherlands, Ph.D. thesis
[20] Krivoshapko, S. N., Thin sheet metal suspended roof structures, Thin-Walled Structures, 119, 629-634 (2017)
[21] Lecieux, Y.; Bouzidi, R., Experimental analysis on membrane wrinkling under biaxial load-comparison with bifurcation analysis, International Journal of Solids and Structures, 47, 2459-2475 (2010) · Zbl 1196.74004
[22] Lecieux, Y.; Bouzidi, R., Numerical wrinkling prediction of thin hyperelastic structures by direct energy minimization, Advances in Engineering Software, 50, 57-68 (2012)
[23] Lee, E.; Zhang, M.; Cho, Y.; Cui, Y.; van der Spiegel, J.; Engheta, N.; Yang, S., Tilted pillars on wrinkled elastomers as a reversibly tunable optical window, Advanced Materials, 26, 4127-4133 (2014)
[24] Li, B.; Cao, Y. P.; Feng, X. Q.; Gao, H., Mechanics of morphological instabilities and surface wrinkling in soft materials: A review, Soft Matter, 8, 5728-5745 (2012)
[25] Li, Q.; Healey, T. J., Stability boundaries for wrinkling in highly stretched elastic sheets, Journal of the Mechanics and Physics of Solids, 97, 260-274 (2016)
[26] Li, Y., Roll up your sleeves, Nature Physics, 14, 534 (2018)
[27] Luo, Y.; Xing, J.; Niu, Y.; Li, M.; Kang, Z., Wrinkle-free design of thin membrane structures using stress-based topology optimization, Journal of the Mechanics and Physics of Solids, 102, 277-293 (2017)
[28] Ma, Q.; Cheng, H.; Jang, K. I.; Luan, H.; Hwang, K. C.; Rogers, J. A., A nonlinear mechanics model of bio-inspired hierarchical lattice materials consisting of horseshoe microstructures, Journal of the Mechanics and Physics of Solids, 90, 179-202 (2016)
[29] Nayyar, V.; Ravi-Chandar, K.; Huang, R., Stretch-induced stress patterns and wrinkles in hyperelastic thin sheets, International Journal of Solids and Structures, 48, 3471-3483 (2011)
[30] Nayyar, V.; Ravi-Chandar, K.; Huang, R., Stretch-induced wrinkling of polyethylene thin sheets: Experiments and modeling, International Journal of Solids and Structures, 51, 1847-1858 (2014)
[31] Nguyen, Q. T.; Thomas, J. C.; Le Van, A., Inflation and bending of an orthotropic inflatable beam, Thin-Walled Structures, 88, 129-144 (2015)
[32] Papastavrou, A.; Steinmann, P.; Kuhl, E., On the mechanics of continua with boundary energies and growing surfaces, Journal of the Mechanics and Physics of Solids, 61, 1446-1463 (2013)
[33] Plucinsky, P.; Bhattacharya, K., Microstructure-enabled control of wrinkling in nematic elastomer sheets, Journal of the Mechanics and Physics of Solids, 102, 125-150 (2017)
[34] Puntel, E.; Deseri, L.; Fried, E., Wrinkling of a stretched thin sheet, Journal of Elasticity, 105, 137-170 (2011) · Zbl 1320.74047
[35] Rammerstorfer, F. G., Buckling of elastic structures under tensile loads, Acta Mechanica, 229, 881-900 (2018)
[36] van Rees, W. M.; Vouga, E.; Mahadevan, L., Growth patterns for shape-shifting elastic bilayers, Proceedings of the National Academy of Sciences of the United States of America, 114, 11597-11602 (2017)
[37] Silvestre, N., Wrinkling of stretched thin sheets: Is restrained poisson’s effect the sole cause?, Engineering Structures, 106, 195-208 (2016)
[38] Sipos, A. A.; Fehér, E., Disappearance of stretch-induced wrinkles of thin sheets: A study of orthotropic film, International Journal of Solids and Structures, 97-98, 275-283 (2016)
[39] Steigmann, D. J., Thin-plate theory for large elastic deformations, International Journal of Non-Linear Mechanics, 42, 233-240 (2007) · Zbl 1200.74098
[40] Steigmann, D. J., Applications of polyconvexity and strong ellipticity to nonlinear elasticity and elastic plate theory, (Schroder, J.; Neff, P., CISM course on applications of poly-, quasi-, and rank-one convexity in applied mechanics, vol. 516 (2010), Springer: Springer Wien and New York), 265-299
[41] Taylor, M.; Bertoldi, K.; Steigmann, D. J., Spatial resolution of wrinkle patterns in thin elastic sheets at finite strain, Journal of the Mechanics and Physics of Solids, 62, 163-180 (2014) · Zbl 1323.74052
[42] Taylor, M.; Davidovitch, B.; Qiu, Z.; Bertoldi, K., A comparative analysis of numerical approaches to the mechanics of elastic sheets, Journal of the Mechanics and Physics of Solids, 79, 92-107 (2015)
[43] Wong, Y. W.; Pellegrino, S., Wrinkled membranes. Part I: Experiments, Journal of Mechanics of Materials and Structures, 1, 3-25 (2006)
[44] Wong, Y. W.; Pellegrino, S., Wrinkled membranes. Part II: Analytical models, Journal of Mechanics of Materials and Structures, 1, 27-61 (2006)
[45] Wong, Y. W.; Pellegrino, S., Wrinkled membranes. Part III: Numerical simulations, Journal of Mechanics of Materials and Structures, 1, 63-95 (2006)
[46] Yan, D.; Zhang, K.; Peng, F.; Hu, G., Tailoring the wrinkle pattern of a microstructured membrane, Applied Physics Letters, 105 (2014)
[47] Yang, Y.; Dai, H. H.; Xu, F.; Potier-Ferry, M., Pattern transitions in a soft cylindrical shell, Physical Review Letters, 120 (2018)
[48] Yin, J.; Chen, X.; Sheinman, I., Anisotropic buckling patterns in spheroidal film/substrate systems and their implications in some natural and biological systems, Journal of the Mechanics and Physics of Solids, 57, 1470-1484 (2009) · Zbl 1371.74205
[49] Zang, J.; Ryu, S.; Pugno, N.; Wang, Q.; Tu, Q.; Buehler, M. J.; Zhao, X., Multifunctionality and control of the crumpling and unfolding of large-area graphene, Nature Materials, 12, 321-325 (2013)
[50] Zhang, Q.; Yin, J., Spontaneous buckling-driven periodic delamination of thin films on soft substrates under large compression, Journal of Mechanics and Physics of Solids, 118, 40-57 (2018)
[51] Zhao, Y.; Shao, Z. C.; Li, G. Y.; Zheng, Y.; Zhang, W. Y.; Li, B., Edge wrinkling of a soft ridge with gradient thickness, Applied Physics Letters, 110 (2017)
[52] Zheng, L., Wrinkling of dielectric elastomer membranes (2009), California Institute of Technology.: California Institute of Technology. Pasadena, USA, Ph.D. thesis
[53] Zhu, J.; Zhang, X.; Wierzbicki, T., Stretch-induced wrinkling of highly orthotropic thin film, International Journal of Solids and Structures, 139-140, 238-249 (2018)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.