×

Multiple solutions for \(p\)-Kirchhoff equations in \(\mathbb R^N\). (English) Zbl 1283.35020

Summary: In this paper, we prove the existence of multiple ground-state solutions for the nonhomogeneous \(p\)-Kirchhoff elliptic equation \[ \begin{aligned} M& \left(\int_{\mathbb R^N}(|\nabla u|^p+V(x)|u|^p)dx\right)(-\Delta_pu+V(x)|u|^{p-2}u)\\& = f(x,u)+g(x)\quad \text{in}\;\mathbb R^N, \end{aligned} \eqno{(0.1)} \] where \(V(x)\in C(\mathbb R^N)\) and \(V(x) \to+\infty\) as \(|x|\to+\infty\). The nonlinear function \(f(x,u)\) is continuous and satisfies some conditions. The solutions are obtained by the Mountain Pass Theorem, Ekeland’s variational principle and Krasnoselskii’s genus theory in [M. Struwe, Variational methods. Applications to nonlinear partial differential equations and Hamiltonian systems. 3rd ed. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. 34. Berlin: Springer (2000; Zbl 0939.49001)].

MSC:

35J20 Variational methods for second-order elliptic equations
35B38 Critical points of functionals in context of PDEs (e.g., energy functionals)
35J92 Quasilinear elliptic equations with \(p\)-Laplacian
58E30 Variational principles in infinite-dimensional spaces
49J40 Variational inequalities

Citations:

Zbl 0939.49001
Full Text: DOI

References:

[1] Struwe, M., Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems (2000), Springer-Verlag: Springer-Verlag New York · Zbl 0939.49001
[3] Li, Y. H.; Li, F. Y.; Shi, J. P., Existence of a positive solution to Kirchhoff type problems without compactness conditions, J. Differential Equations, 253, 2285-2294 (2012) · Zbl 1259.35078
[4] Alves, C. O.; Figueiredo, G. M., Nonlinear perturbations of a periodic Kirchhoff equation in \(R^N\), Nonlinear Anal., 75, 2750-2759 (2012) · Zbl 1264.45008
[5] Alves, C. O.; Corrêa, F. J.S. A.; MA, T. F., Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Comput. Math. Appl., 49, 85-93 (2005) · Zbl 1130.35045
[6] Chipot, M.; Lovat, B., Some remarks on nonlocal elliptic and parabolic problems, Nonlinear Anal., 30, 4619-4627 (1997) · Zbl 0894.35119
[7] Corrêa, F. J.S. A., On positive solutions of nonlocal and nonvariational elliptic problems, Nonlinear Anal., 59, 1147-1155 (2004) · Zbl 1133.35043
[8] Dreher, M., The Kirchhoff equation for the \(p\)-Laplacian, Rend. Semin. Mat. Univ. Politec. Torino, 64, 217-238 (2006) · Zbl 1178.35006
[9] Liu, D.; Zhao, P., Multiple nontrivial solutions to a \(p\)-Kirchhoff equation, Nonlinear Anal., 75, 5032-5038 (2012) · Zbl 1248.35018
[10] Corrêa, F. J.S. A.; Figueiredo, G. M., On a \(p\)-Kirchhoff equation via Krasnoselskii’s genus, Appl. Math. Lett., 22, 819-822 (2009) · Zbl 1171.35371
[11] Colasuonno, F.; Pucci, P., Multiplicity of solutions for \(p(x)\)-polyharmonic elliptic Kirchhoff equations, Nonlinear Anal., 74, 5962-5974 (2011) · Zbl 1232.35052
[12] Toan, H. Q.; Chung, N. T., Existence of weak solutions for a class of nonuniformly nonlinear elliptic equations in unbounded domains, Nonlinear Anal., 70, 3987-3996 (2009) · Zbl 1163.35394
[13] Mihăilescu, M.; Rădulescu, V., Ground state solutions of nonlinear singular Schrödinger equations with lack of compactness, Math. Methods Appl. Sci., 26, 897-906 (2003) · Zbl 1107.35102
[14] Gonçalves, J. V.; Miyagaki, O. H., Multiple positive solutions for semilinear elliptic equations in \(R^N\) involving subcritical exponents, Nonlinear Anal., 32, 1, 41-51 (1998) · Zbl 0891.35031
[15] Cazenave, T., Semilinear Schrödinger Equations, Courant lecture notes, vol. 10 (2003), American Math. Soc. Providence: American Math. Soc. Providence Rhole Island · Zbl 1055.35003
[16] Caffarelli, L.; Kohn, R.; Nirenberg, L., First order interpolation inequalities with weights, Compos. Math., 53, 3, 259-275 (1984) · Zbl 0563.46024
[17] Wu, T. F., Multiple positive solutions for a class of concave-convex elliptic problems in \(R^N\) involving sign-changing weight, J. Funct. Anal., 258, 99-131 (2010) · Zbl 1182.35119
[18] Wu, T. F., On semilinear elliptic equations involving critical Sobolev exponents and sign-changing weight function, Commun. Pure Appl. Anal., 7, 383-405 (2008) · Zbl 1156.35046
[19] Brown, K. J.; Zhang, Y., The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function, J. Differential Equations, 193, 481-499 (2003) · Zbl 1074.35032
[20] Ambrosetti, A.; Rabinowitz, P. H., Dual variational methods in critical point theorey and applications, J. Funct. Anal., 14, 349-381 (1973) · Zbl 0273.49063
[21] Kuzin, I.; Pohozaev, S., (Entire Solutions of Semilinear Elliptic Equations. Entire Solutions of Semilinear Elliptic Equations, Progress in Nonlinear Differential Equations and Their Applications, vol. 33 (1997), Birkhäuser) · Zbl 0882.35003
[22] Chen, C. S.; Liu, S. L.; Yao, H. P., Existence of solutions for quasilinear elliptic exterior problem with the concave-convex nonlinearities and the nonlinear boundary conditions, J. Math. Anal. Appl., 383, 111-119 (2012) · Zbl 1222.35090
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.