×

Effects of buoyancy on turbulent premixed V-flames by large-eddy simulation. (English) Zbl 1216.80022

Summary: Buoyancy effects on turbulent premixed V-flames are investigated under normal gravity (\(+\)g) and reversed gravity (\(-\)g). Numerical simulations employ large eddy simulation (LES) with a dynamic model for sub-grid scale stress. With the assumption of fast chemistry combustion, a progress variable c-equation is applied to describe the flame front propagation. The equations are solved using a projection-based fractional step method in two dimensions for low-Mach number flows. Computed LES results of buoyancy effects on flame angle and flame brush thickness are consistent with those obtained from experiments. In both \(+\)g and \(-\)g conditions, the effects of buoyancy become important with increase in Richardson number (Ri). Buoyancy force tends to close up the flame under \(+\)g, but has the opposite effect under \(-\)g. Buoyancy force also suppresses flame wrinkling in \(+\)g and enhances wrinkling in \(-\)g. While there is a lack of experimental data available, computed axial velocity is shown to be significantly affected by buoyancy downstream from the flame holder under moderate Reynolds number.

MSC:

80A25 Combustion
76F65 Direct numerical and large eddy simulation of turbulence
76R10 Free convection
Full Text: DOI

References:

[1] DOI: 10.1016/0010-2180(96)00050-8 · doi:10.1016/0010-2180(96)00050-8
[2] DOI: 10.1016/S0010-2180(98)00063-7 · doi:10.1016/S0010-2180(98)00063-7
[3] DOI: 10.1007/BF02873325 · doi:10.1007/BF02873325
[4] Bell J. B., Int. Coll. Dyn. Explo. React. Sys., Japan (2003)
[5] Bell J. B., A computational study of equivalence ratio effects in turbulent, premixed Methane-Air flame (2006)
[6] Chan C. K., Int. J. Eng. Sci. 48 pp 613– (2000)
[7] DOI: 10.1016/S0020-7225(02)00319-1 · Zbl 1211.80040 · doi:10.1016/S0020-7225(02)00319-1
[8] Chan, C. K., Stewart, B. and Leung, C. W. Numerical Simulation of Premixed V-Flame. World Congress on Engineering 2007, Vols 1 and 2, Book Series: Lecture Notes in Engineering and Computer Science. pp.1317–1321.
[9] Poinsot T., Theoretical and Numerical Combustion (2001)
[10] DOI: 10.1023/B:APPL.0000004912.87854.35 · Zbl 1113.76358 · doi:10.1023/B:APPL.0000004912.87854.35
[11] DOI: 10.1016/S0017-9310(03)00193-5 · doi:10.1016/S0017-9310(03)00193-5
[12] DOI: 10.1016/j.jcp.2006.06.031 · Zbl 1111.76024 · doi:10.1016/j.jcp.2006.06.031
[13] Murrone A., Large eddy simulation of a turbulent premixed flame stabilized by a backward facing step (2005)
[14] DOI: 10.1016/S0082-0784(00)80196-4 · doi:10.1016/S0082-0784(00)80196-4
[15] DOI: 10.1016/j.proci.2004.08.218 · doi:10.1016/j.proci.2004.08.218
[16] DOI: 10.1016/j.proci.2004.08.279 · doi:10.1016/j.proci.2004.08.279
[17] DOI: 10.1002/fld.341 · Zbl 1101.80308 · doi:10.1002/fld.341
[18] DOI: 10.1063/1.857955 · Zbl 0825.76334 · doi:10.1063/1.857955
[19] DOI: 10.1016/S0010-2180(98)00115-1 · doi:10.1016/S0010-2180(98)00115-1
[20] Knikker, R., Veynante, D., Rolon, J. C. and Meneveau, C. Planar laser-induced fluorescence in a turbulent premixed flame to analyze large eddy simulation models. Proc. Int. Symp. Turb. Heat and Mass Tran., Lisbon.
[21] DOI: 10.1016/j.jcp.2005.07.001 · Zbl 1216.76048 · doi:10.1016/j.jcp.2005.07.001
[22] DOI: 10.1006/jcph.1997.5856 · Zbl 0936.76064 · doi:10.1006/jcph.1997.5856
[23] DOI: 10.1006/jcph.1999.6408 · Zbl 0973.76068 · doi:10.1006/jcph.1999.6408
[24] DOI: 10.1016/j.combustflame.2003.10.005 · doi:10.1016/j.combustflame.2003.10.005
[25] Wu, Y. Y. and Chan, C. K. 2010. Extended progress variable and mixture fraction model for turbulent premixed combustion. Int. Conf. Appl. Eng. Math. June2010, London, UK.
[26] Wu Y. Y., PhD Thesis, in: Large eddy simulation of buoyancy effects on turbulent premixed combustion
[27] DOI: 10.1016/j.combustflame.2004.07.010 · doi:10.1016/j.combustflame.2004.07.010
[28] DOI: 10.1016/j.proci.2006.07.186 · doi:10.1016/j.proci.2006.07.186
[29] DOI: 10.1006/jcph.1998.5882 · Zbl 0936.76026 · doi:10.1006/jcph.1998.5882
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.