×

The beam control in two-channels PT-symmetric waveguide with fractional diffraction effect. (English) Zbl 1522.81102

Summary: The double gray solitons and beams control in two-channels PT-symmetric waveguide with fractional diffraction are studied. In the defocusing Kerr nonlinear effect, the stable double gray solitons can be obtained in the two-channels PT-symmetric waveguide. The effects of Lévy index and gain/loss coefficient on the existence, stability, gray scale and power of gray solitons are studied in detail. In addition, the transmission and control of bright soliton beams are studied in the two-channels PT-symmetric waveguide with focusing Kerr nonlinear effect. Due to the refractive index distribution of waveguide, the beam propagates as a respirator along the center when it inputs from the center. Otherwise, the propagation of beam occurs oscillation between two channels. The input positions and Lévy index can affect the frequency and amplitude of beam oscillation. And the gain/loss coefficient can cause energy flowing. Double beams can occur periodic elastic collisions and form a peak wave in the waveguide.

MSC:

81Q37 Quantum dots, waveguides, ratchets, etc.
35Q55 NLS equations (nonlinear Schrödinger equations)
35C08 Soliton solutions
81Q93 Quantum control
81P47 Quantum channels, fidelity
70F05 Two-body problems
78A45 Diffraction, scattering
81U05 \(2\)-body potential quantum scattering theory
Full Text: DOI

References:

[1] Chen, C.; Chen, B.; Peng, X.; Deng, D., Propagation of Airy-Gaussian beam in Kerr medium, J. Opt., 17, 3, Article 035504 pp. (2015)
[2] Chen, C.; Peng, X.; Chen, B.; Peng, Y.; Zhou, M.; Yang, X.; Deng, D., Propagation of an Airy-Gaussian vortex beam in linear and nonlinear media, J. Opt., 18, 5, Article 055505 pp. (2016)
[3] Laskin, N., Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 268, 4-6, 298-305 (2000) · Zbl 0948.81595
[4] Laskin, N., Fractional quantum mechanics, Phys. Rev. E, 62, 3, 3135-3145 (2000)
[5] Laskin, N., Fractional Schrödinger equation, Phys. Rev. E, 66, 5, Article 056108 pp. (2002)
[6] Wen, J.; Zhang, Y.; Xiao, M., The Talbot effect: recent advances in classical optics, nonlinear optics, and quantum optics, Adv. Opt. Photonics, 5, 1, 83-130 (2013)
[7] Rokhinson, L. P.; Liu, X.; Furdyna, J. K., The fractional a.c. Josephson effect in a semiconductor-superconductor nanowire as a signature of Majorana particles, Nat. Phys., 8, 11, 795-799 (2012)
[8] Olivar-Romero, F.; Rosas-Ortiz, O., Factorization of the quantum fractional oscillator, J. Phys. Condens. Matter, 698, 1, Article 012025 pp. (2016)
[9] Stickler, B. A., Potential condensed-matter realization of space-fractional quantum mechanics: the one-dimensional Lévy crystal, Phys. Rev. E, 88, 1, Article 012120 pp. (2013)
[10] Longhi, S., Fractional Schrödinger equation in optics, Opt. Lett., 40, 6, 1117-1120 (2015)
[11] Zhang, Y.; Zhong, H.; Belić, M. R.; Ahmed, N.; Zhang, Y.; Xiao, M., Diffraction-free beams in fractional Schrödinger equation, Sci. Rep., 6, 1, Article 23645 pp. (2016)
[12] Zhang, Y.; Liu, X.; Belić, M. R.; Zhong, W.; Zhang, Y.; Xiao, M., Propagation dynamics of a light beam in a fractional Schrödinger equation, Phys. Rev. Lett., 115, 18, Article 180403 pp. (2015)
[13] Huang, C.; Dong, L., Beam propagation management in a fractional Schrödinger equation, Sci. Rep., 7, 1, 5442 (2017)
[14] Huang, X.; Shi, X.; Deng, Z.; Bai, Y.; Fu, X., Potential barrier-induced dynamics of finite energy Airy beams in fractional Schrödinger equation, Opt. Express, 25, 26, 32560-32569 (2017)
[15] Zang, F.; Wang, Y.; Li, L., Dynamics of Gaussian beam modeled by fractional Schrödinger equation with a variable coefficient, Opt. Express, 26, 18, 23740-23750 (2018)
[16] Zhang, L.; Li, C.; Zhong, H.; Xu, C.; Lei, D.; Li, Y.; Fan, D., Propagation dynamics of super-Gaussian beams in fractional Schrödinger equation: from linear to nonlinear regimes, Opt. Express, 24, 13, 14406-14418 (2016)
[17] He, S.; Malomed, B. A.; Mihalache, D.; Peng, X.; Yu, X.; He, Y.; Deng, D., Propagation dynamics of abruptly autofocusing circular Airy Gaussian vortex beams in the fractional Schrödinger equation, Chaos Solitons Fractals, 142, Article 110470 pp. (2021) · Zbl 1496.35427
[18] Zhang, L.; Zhang, X.; Wu, H.; Li, C.; Pierangeli, D.; Gao, Y.; Fan, D., Anomalous interaction of Airy beams in the fractional nonlinear Schrödinger equation, Opt. Express, 27, 20, 27936-27945 (2019)
[19] Huang, C.; Dong, L., Gap solitons in the nonlinear fractional Schrödinger equation with an optical lattice, Opt. Lett., 41, 24, 5636-5639 (2016)
[20] Li, P.; Li, R.; Dai, C., Existence, symmetry breaking bifurcation and stability of two-dimensional optical solitons supported by fractional diffraction, Opt. Express, 29, 3, 3193-3210 (2021)
[21] Huang, C.; Dong, L., Dissipative surface solitons in a nonlinear fractional Schrödinger equation, Opt. Lett., 44, 22, 5438-5441 (2019)
[22] Li, P.; Malomed, B. A.; Mihalache, D., Metastable soliton necklaces supported by fractional diffraction and competing nonlinearities, Opt. Express, 28, 23, 34472-34488 (2020)
[23] Zhu, X.; Cao, S.; Xie, J.; Qiu, Y.; He, Y., Vector surface solitons in optical lattices with fractional-order diffraction, J. Opt. Soc. Am. B, 37, 10, 3041-3047 (2020)
[24] Zeng, L.; Zhu, Y.; Malomed, B. A.; Mihalache, D.; Wang, Q.; Long, H.; Cai, Y.; Lu, X.; Li, J., Quadratic fractional solitons, Chaos Solitons Fractals, 154, Article 111586 pp. (2022) · Zbl 1498.35602
[25] Bender, C. M.; Boettcher, S., Real spectra in non-Hermitian Hamiltonians having PT symmetry, Phys. Rev. Lett., 80, 24, 5243-5246 (1998) · Zbl 0947.81018
[26] Bender, C. M., Making sense of non-Hermitian Hamiltonians, Rep. Prog. Phys., 70, 6, 947 (2007)
[27] El-Ganainy, R.; Makris, K. G.; Christodoulides, D. N.; Musslimani, Z. H., Theory of coupled optical PT-symmetric structures, Opt. Lett., 32, 17, 2632-2634 (2007)
[28] Makris, K. G.; El-Ganainy, R.; Christodoulides, D. N.; Musslimani, Z. H., Beam dynamics in PT symmetric optical lattices, Phys. Rev. Lett., 100, 10, Article 103904 pp. (2008)
[29] Guo, A.; Salamo, G. J.; Duchesne, D.; Morandotti, R.; Volatier-Ravat, M.; Aimez, V.; Siviloglou, G. A.; Christodoulides, D. N., Observation of PT-symmetry breaking in complex optical potentials, Phys. Rev. Lett., 103, 9, Article 093902 pp. (2009)
[30] Regensburger, A.; Bersch, C.; Miri, M. A.; Onishchukov, G.; Christodoulides, D. N.; Peschel, U., Parity-time synthetic photonic lattices, Nature, 488, 7410, 167-171 (2012)
[31] Musslimani, Z. H.; Makris, K. G.; El-Ganainy, R.; Christodoulides, D. N., Optical solitons in PT periodic potentials, Phys. Rev. Lett., 100, 3, Article 030402 pp. (2008)
[32] Driben, R.; Malomed, B. A., Stability of solitons in parity-time-symmetric couplers, Opt. Lett., 36, 22, 4323-4325 (2011)
[33] Zhu, X.; Wang, H.; Li, H.; He, W.; He, Y., Two-dimensional multipeak gap solitons supported by parity-time-symmetric periodic potentials, Opt. Lett., 38, 15, 2723-2725 (2013)
[34] Li, P.; Dai, C.; Li, R.; Gao, Y., Symmetric and asymmetric solitons supported by a PT-symmetric potential with saturable nonlinearity: bifurcation, stability and dynamics, Opt. Express, 26, 6, 6949-6961 (2018)
[35] Zhang, Y.; Zhong, H.; Belić, M. R., PT symmetry in a fractional Schrödinger equation, Laser Photonics Rev., 10, 3, 526-531 (2016)
[36] Zhan, K.; Jiao, Z.; Jia, Y.; Xu, X., Defect modes of defective parity-time symmetric potentials in one-dimensional fractional Schrödinger equation, IEEE Photonics J., 9, 6, 1-8 (2017)
[37] Huang, C.; Deng, H.; Zhang, W.; Ye, F.; Dong, L., Fundamental solitons in the nonlinear fractional Schrödinger equation with a PT-symmetric potential, Europhys. Lett., 122, 2, Article 24002 pp. (2018)
[38] Dong, L.; Huang, C., Double-hump solitons in fractional dimensions with a PT-symmetric potential, Opt. Express, 26, 8, 10509-10518 (2018)
[39] Tehrani, D. H.T.; Solaimani, M.; Ghalandari, M.; Babayar-Razlighi, B., Solitons propagation dynamics in a saturable PT-symmetric fractional medium, Phys. Scr., 96, 12, Article 125531 pp. (2021)
[40] Cao, Q.; Dai, C., Symmetric and anti-symmetric solitons of the fractional second- and third-order nonlinear Schrödinger equation, Chin. Phys. Lett., 38, 9, Article 090501 pp. (2021)
[41] Yao, X.; Liu, X., Solitons in the fractional Schrödinger equation with parity-time-symmetric lattice potential, Photon. Res., 6, 9, 875-879 (2018)
[42] Xie, J.; Zhu, X.; He, Y., Vector solitons in nonlinear fractional Schrödinger equations with parity-time-symmetric optical lattices, Nonlinear Dyn., 97, 2, 1287-1294 (2019) · Zbl 1430.35214
[43] Wu, Z.; Cao, S.; Che, W.; Yang, F.; Zhu, X.; He, Y., Solitons supported by parity-time-symmetric optical lattices with saturable nonlinearity in fractional Schrödinger equation, Results Phys., 19, Article 103381 pp. (2020)
[44] Li, L.; Li, H.; Ruan, W.; Leng, F.; Luo, X., Gap solitons in parity-time-symmetric lattices with fractional-order diffraction, J. Opt. Soc. Am. B, 37, 2, 488-494 (2020)
[45] Zhu, X.; Yang, F.; Cao, S.; Xie, J.; He, Y., Multipole gap solitons in fractional Schrödinger equation with parity-time-symmetric optical lattices, Opt. Express, 28, 2, 1631-1639 (2020)
[46] Zeng, L.; Shi, J.; Lu, X.; Cai, Y.; Zhu, Q.; Chen, H.; Long, H.; Li, J., Stable and oscillating solitons of PT-symmetric couplers with gain and loss in fractional dimension, Nonlinear Dyn., 103, 1831-1840 (2021) · Zbl 1517.35216
[47] Dong, L.; Huang, C., Vortex solitons in fractional systems with partially parity-time-symmetric azimuthal potentials, Nonlinear Dyn., 98, 2, 1019-1028 (2019)
[48] Su, W.; Deng, H.; Dong, L.; Huang, Z.; Huang, C., Stabilization of fundamental solitons in the nonlinear fractional Schrödinger equation with PT-symmetric nonlinear lattices, Chaos Solitons Fractals, 141, Article 110427 pp. (2020) · Zbl 1496.35439
[49] Li, P.; Li, J.; Han, B.; Ma, H.; Mihalache, D., PT-symmetric optical modes and spontaneous symmetry breaking in the space-fractional Schrödinger equation, Rom. Rep. Phys., 71, 2, 106 (2019)
[50] Li, P.; Malomed, B. A.; Mihalache, D., Symmetry-breaking bifurcations and ghost states in the fractional nonlinear Schrödinger equation with a PT-symmetric potential, Opt. Lett., 46, 13, 3267-3270 (2021)
[51] Che, W.; Yang, F.; Cao, S.; Wu, Z.; Zhu, X.; He, Y., Gray solitons in parity-time-symmetric localized potentials with fractional-order diffraction, Phys. Lett. A, 413 (2021) · Zbl 07412634
[52] Li, P.; Malomed, B. A.; Mihalache, D., Symmetry breaking of spatial Kerr solitons in fractional dimension, Chaos Solitons Fractals, 132, Article 109602 pp. (2020) · Zbl 1434.35008
[53] Yang, J., Nonlinear Waves in Integrable and Nonintegrable Systems (2010), SIAM · Zbl 1234.35006
[54] Guo, B.; Pu, X.; Huang, F., Fractional Partial Differential Equations and Their Numerical Solutions (2015), World Scientific · Zbl 1335.35001
[55] Kartashov, Y. V.; Torner, L., Gray spatial solitons in nonlocal nonlinear media, Opt. Lett., 32, 8, 946-948 (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.