×

Dynamics in closed and open capillaries. (English) Zbl 1419.76196

Summary: Capillary rise of a liquid displacing gas is analysed for both open and closed capillaries. We include menisci mass and hysteresis, and show that oscillations due to inertia are muted by friction at the advancing meniscus. From single-phase numerical computations in a no-slip/slip capillary, we quantify losses due to entry, flow development, meniscus slip, exit and acceleration of fluid within the reservoir. For closed capillaries, determining viscous drag due to gas requires inclusion of compressibility, and solving a moving boundary problem. This solution is derived through perturbation expansion with respect to two different small parameters for obtaining pressure above the liquid meniscus. Our rise predictions spanning a large range of experimental conditions and fluids for both open and closed capillaries match the data. The experimental data confirm the adequacy of the theoretically constructed dimensionless groups for predicting oscillatory behaviour.

MSC:

76D45 Capillarity (surface tension) for incompressible viscous fluids
Full Text: DOI

References:

[1] Bird, R. B., Stewart, W. E. & Lightfoot, E. N.2002Transport Phenomena, 2nd edn. John Wiley & Sons.
[2] Blake, T. D.2006The physics of moving wetting lines. J. Colloid. Interface Sci.299 (1), 1-13.
[3] Blake, T. D. & Haynes, J. M.1969Kinetics of liquid/liquid displacement. J. Colloid Interface Sci.30 (3), 421-423.
[4] Bosanquet, C. H.1923On the flow of liquids into capillary tubes. Lond. Edin. Dublin Phil. Mag. J. Sci.45 (267), 525-531.
[5] Brochard-Wyart, F. & De Gennes, P. G.1992Dynamics of partial wetting. Adv. Colloid. Interface Sci.39, 1-11.
[6] Cox, R. G.1986The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow. J. Fluid Mech.168, 169-194. · Zbl 0597.76102
[7] Das, S. & Mitra, S. K.2013Different regimes in vertical capillary filling. Phys. Rev. E87 (6), 063005.
[8] Dorsey, N. E.1926Measurement of surface tension. NBS Sci. Papers21, 563-595.
[9] Duvivier, D., Blake, T. D. & De Coninck, J.2013Toward a predictive theory of wetting dynamics. Langmuir29 (32), 10132-10140.
[10] Fries, N. & Dreyer, M.2008The transition from inertial to viscous flow in capillary rise. J. Colloid. Interface Sci.327, 125-128.
[11] Hamraoui, A. & Nylander, T.2002Analytical approach for the Lucas-Washburn equation. J. Colloid. Interface Sci.250 (2), 415-421.
[12] Hartland, S. & Hartley, R. W.1976Axisymmetric Fluid – liquid Interfaces: Tables Giving the Shape of Sessile and Pendant Drops and External Menisci, with Examples of Their Use. Elsevier Science Ltd. · Zbl 0351.76043
[13] Heshmati, M. & Piri, M.2014Experimental investigation of dynamic contact angle and capillary rise in tubes with circular and noncircular cross sections. Langmuir30 (47), 14151-14162.
[14] Hoffman, R. L.1975A study of the advancing interface. I. Interface shape in liquid – gas systems. J. Colloid. Interface Sci.50 (2), 228-241.
[15] Hultmark, M., Aristoff, J. M. & Stone, H. A.2011The influence of the gas phase on liquid imbibition in capillary tubes. J. Fluid Mech.678, 600-606. · Zbl 1241.76031
[16] Jurin, J.1717An account of some experiments shown before the royal society; with an enquiry into the cause of the ascent and suspension of water in capillary tubes. Phil. Trans.30, 739-747.
[17] Katoh, K., Wakimoto, T., Yamamoto, Y. & Ito, T.2015Dynamic wetting behavior of a triple-phase contact line in several experimental systems. Exp. Therm. Fluid Sci.60, 354-360.
[18] Kornev, K. G. & Neimark, A. V.2001Spontaneous penetration of liquids into capillaries and porous membranes revisited. J. Colloid. Interface Sci.235 (1), 101-113.
[19] Lim, H., Tripathi, A. & Lee, J.2014Dynamics of a capillary invasion in a closed-end capillary. Langmuir30 (31), 9390-9396.
[20] Liu, S., Li, S. & Liu, J.2018Jurin’s law revisited: exact meniscus shape and column height. Eur. Phys. J. E41 (3), 46.
[21] Lucas, R.1918Rate of capillary ascension of liquids. Kolloid Z23 (15), 15-22.
[22] Maggi, F. & Alonso-Marroquin, F.2012Multiphase capillary flows. Intl J. Multiphase Flow42, 62-73.
[23] Masoodi, R., Languri, E. & Ostadhossein, A.2013Dynamics of liquid rise in a vertical capillary tube. J. Colloid Interface Sci.389 (1), 268-272.
[24] Popescu, M. N., Ralston, J. & Sedev, R.2008Capillary rise with velocity-dependent dynamic contact angle. Langmuir24 (21), 12710-12716.
[25] Quéré, D1997Inertial capillarity. Europhys. Lett.39 (5), 533.
[26] Quéré, D., Raphaël, É. & Ollitrault, J.-Y.1999Rebounds in a capillary tube. Langmuir15 (10), 3679-3682.
[27] Radiom, M., Chan, W. K. & Yang, C.2010Capillary filling with the effect of pneumatic pressure of trapped air. Microfluid Nanofluid9 (1), 65-75.
[28] Szekely, J., Neumann, A. W. & Chuang, Y. K.1971The rate of capillary penetration and the applicability of the washburn equation. J. Colloid Interface Sci.35 (2), 273-278.
[29] Verschaffelt, J.1919Applications of small drops and bubbles. K. Akad Amsterdam21, 366-374.
[30] Voinov, O. V.1976Hydrodynamics of wetting. Fluid Dyn.11 (5), 714-721.
[31] Walls, P. L. L., Dequidt, G. & Bird, J. C.2016Capillary displacement of viscous liquids. Langmuir32 (13), 3186-3190.
[32] Washburn, E. W.1921The dynamics of capillary flow. Phys. Rev.17 (3), 273.
[33] Wu, P., Nikolov, A. D. & Wasan, D. T.2017Capillary rise: validity of the dynamic contact angle models. Langmuir33 (32), 7862-7872.
[34] Xiao, Y., Yang, F. & Pitchumani, R.2006A generalized analysis of capillary flows in channels. J. Colloid. Interface Sci.298 (2), 880-888.
[35] Zhmud, B. V., Tiberg, F. & Hallstensson, K.2000Dynamics of capillary rise. J. Colloid Interface Sci.228 (2), 263-269.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.