×

On the experimental validation of combustion simulations in turbulent non-premixed jets. (English) Zbl 1216.80021

Summary: A Reynolds averaged Navier-Stokes (RANS) based combustion model, which incorporated the conditional source-term estimation (CSE) method for the closure of the chemical source term and the trajectory generated low-dimensional manifold (TGLDM) method for the reduction of detailed chemistry, was applied to predict the OH radical distribution in a combusting non-premixed methane jet. The results of the numerical prediction were compared with the results of a complementary experimental study in which the OH radical fields of combusting non-premixed methane jets were visualized using planar laser induced fluorescence (PLIF). It is well known within the modelling community that RANS based models are unable to capture the stochastic nature of turbulent combustion and autoignition, and are therefore unable to predict individual realizations of the flame. In this study, the agreement between the predicted OH field and a well-converged ensemble average of the experimental results was also shown to be poor. The lack of agreement between the numerical results and the ensemble averaged experimental results expose the potential significance of the known weakness in the RANS method. A statistical analysis of the experimental results was also performed. The results of the analysis showed that a minimum of 100 individual realizations was required to provide a well-converged average OH field for the combusting non-premixed jet under investigation. The significance of this result with respect to the validation of large-eddy simulations (LES) of combusting jets is discussed.

MSC:

80A25 Combustion
76D05 Navier-Stokes equations for incompressible viscous fluids
76F65 Direct numerical and large eddy simulation of turbulence
65C05 Monte Carlo methods
80M31 Monte Carlo methods applied to problems in thermodynamics and heat transfer
Full Text: DOI

References:

[1] Launder B. E., Mathematical model of turbulence (1972) · Zbl 0288.76027
[2] DOI: 10.1017/S0022112075001814 · Zbl 0301.76030 · doi:10.1017/S0022112075001814
[3] Bilger R. W., Turbulent reacting flows 44 pp 65– (1980) · doi:10.1007/3540101926_9
[4] DOI: 10.1016/0360-1285(84)90114-X · doi:10.1016/0360-1285(84)90114-X
[5] DOI: 10.1016/S0082-0784(98)80506-7 · doi:10.1016/S0082-0784(98)80506-7
[6] DOI: 10.1016/S0360-1285(99)00006-4 · doi:10.1016/S0360-1285(99)00006-4
[7] Pope S. B., Turbulent flows (2000)
[8] DOI: 10.1016/j.proci.2004.08.273 · doi:10.1016/j.proci.2004.08.273
[9] DOI: 10.1016/j.proci.2006.07.104 · doi:10.1016/j.proci.2006.07.104
[10] DOI: 10.1016/0360-1285(85)90002-4 · doi:10.1016/0360-1285(85)90002-4
[11] DOI: 10.1080/13647830701330922 · Zbl 1180.80061 · doi:10.1080/13647830701330922
[12] DOI: 10.1063/1.870052 · Zbl 1147.76343 · doi:10.1063/1.870052
[13] DOI: 10.1080/13647830701324289 · Zbl 1180.80062 · doi:10.1080/13647830701324289
[14] Pope S. B., FDA
[15] DOI: 10.1080/13647830802116469 · Zbl 1151.80320 · doi:10.1080/13647830802116469
[16] DOI: 10.1080/13647830701598486 · Zbl 1148.80389 · doi:10.1080/13647830701598486
[17] DOI: 10.1080/13647830500399995 · doi:10.1080/13647830500399995
[18] DOI: 10.1016/0378-4371(92)90283-V · doi:10.1016/0378-4371(92)90283-V
[19] DOI: 10.1016/0021-9991(73)90147-2 · Zbl 0251.76004 · doi:10.1016/0021-9991(73)90147-2
[20] DOI: 10.1016/j.combustflame.2003.09.002 · doi:10.1016/j.combustflame.2003.09.002
[21] DOI: 10.1016/j.combustflame.2005.06.013 · doi:10.1016/j.combustflame.2005.06.013
[22] Gaydon A. G., The shock tube in high temperature chemical physics (1963)
[23] DOI: 10.1016/j.combustflame.2004.08.015 · doi:10.1016/j.combustflame.2004.08.015
[24] DOI: 10.1016/j.combustflame.2007.06.019 · doi:10.1016/j.combustflame.2007.06.019
[25] DOI: 10.1016/S0010-2180(97)00241-1 · doi:10.1016/S0010-2180(97)00241-1
[26] DOI: 10.1016/S1540-7489(02)80228-0 · doi:10.1016/S1540-7489(02)80228-0
[27] DOI: 10.1016/j.combustflame.2005.04.005 · doi:10.1016/j.combustflame.2005.04.005
[28] DOI: 10.1016/j.proci.2006.08.078 · doi:10.1016/j.proci.2006.08.078
[29] DOI: 10.1088/1364-7830/8/1/001 · doi:10.1088/1364-7830/8/1/001
[30] DOI: 10.1080/00102200500270106 · doi:10.1080/00102200500270106
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.