×

On the normal number of prime factors of \(\varphi(n)\) subject to certain congruence conditions. (English) Zbl 1396.11112

Summary: Let \(q \geq 2\) be an integer and \(S_q(n)\) denote the sum of the digits in base \(q\) of the positive integer \(n\). It is proved that for every real number \(\alpha\) and \(\beta\) with \(\alpha < \beta\), \[ \lim_{x \to +\infty} \frac{1}{x} \# \left\{n\leq x: \alpha \leq \frac{v(\varphi(n)) - \frac{1}{2 b}(\log\log n)^2}{\frac{1}{\sqrt{3} b}(\log\log n)^{\frac{3}{2}}} \leq \beta \right\} = \frac{1}{\sqrt{2 \pi}} \int_\alpha^\beta e^{- \frac{t^2}{2}} \,dt, \] where \(v(n)\) is either \(\widetilde{\omega}(n)\) or \(\widetilde{\Omega}(n)\), the number of distinct prime factors and the total number of prime factors \(p\) of a positive integer \(n\) such that \(S_q(p) \equiv a \bmod b\) \((a, b \in \mathbb{Z}\), \(b\geq 2\)). This extends the results known through the work of P. Erdős and C. Pomerance, M. Ram Murty and V. Kumar Murty to primes under digital constraint.

MSC:

11N05 Distribution of primes
11A63 Radix representation; digital problems
11L03 Trigonometric and exponential sums (general theory)
Full Text: DOI

References:

[1] Bombieri, E.; Friedlander, J.; Iwaniec, H., Non primes in arithmetic progressions to large moduli, Acta Math., 156, 203-251 (1986) · Zbl 0588.10042
[2] Coquet, J., Sur les fonctions Q-multiplicatives et Q-additives (1975), Orsay, Thèse \(3^{ème}\) cycle · Zbl 0311.10050
[3] Delange, H., Sur les fonctions \(q\)-additives ou \(q\)-multiplicatives, Acta Arith., 21, 285-298 (1972) · Zbl 0219.10062
[4] Drmota, M.; Mauduit, C.; Rivat, J., Primes with an average sum of digits, Compos. Math., 145, 271-292 (2009) · Zbl 1230.11013
[5] Elliott, P. D.T. A., Probabilistic Number Theory I, II (1980), Springer-Verlag: Springer-Verlag New York · Zbl 0431.10030
[6] Erdős, P., On the normal number of prime factors of \(p - 1\) and some related problems concerning the Euler’s \(ϕ\) function, Quart. J. Math., 6, 205-213 (1935) · JFM 61.0129.05
[7] Erdős, P.; Pomerance, C., On the normal number of prime factors of \(\phi(n)\), Rocky Mountain J. Math., 15, 343-350 (1985) · Zbl 0617.10037
[8] Gelfond, A. O., Sur les nombres qui ont des propriétés additives et multiplicatives données, Acta Arith., 13, 259-265 (1968) · Zbl 0155.09003
[9] Mauduit, C.; Rivat, J., Sur un problème de Gelfond: La somme des chiffres des nombres premiers, Ann. of Math., 71, 1591-1646 (2010) · Zbl 1213.11025
[10] Mkaouar, M.; Wannes, W., On the number of restricted prime factors of an integer, Acta Math. Hungar., 143, 88-95 (2014) · Zbl 1340.11013
[11] Murty, M. R.; Murty, V. K., Prime divisors of Fourier coefficient of modular forms, Duke Math. J., 51, 57-76 (1984) · Zbl 0537.10026
[12] Murty, M. R.; Saidak, F., Non Abelian generalisations of the Erdős-Kac theorem, Canad. J. Math., 56, 356-372 (2004) · Zbl 1061.11052
[13] Norton, K. K., On the number of restricted prime factors of an integer III, Enseign. Math., 28, 31-52 (1982) · Zbl 0501.10046
[14] Pomerance, C., On the distribution of amicable numbers, J. Reine Angew. Math., 293, 217-222 (1977) · Zbl 0349.10004
[15] Pomerance, C., Popular values of Euler’s function, Mathematika, 27, 84-89 (1980) · Zbl 0437.10001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.