×

An improved state-space model structure and a corresponding predictive functional control design with improved control performance. (English) Zbl 1417.93203

Summary: Conventional state-space model predictive control requires a state estimator/observer to access the state information for feedback controller design. Its drawbacks are the numerical convergence stability of the observer and closed-loop control performance deterioration with activated plant input/output constraints. The recent direct use of measured input and output variables to formulate a non-minimal state-space (NMSS) model overcomes these problems, but the subsequent controller is too sensitive to model mismatch. In this article, an improved structure of NMSS model that incorporates the output-tracking error is first formulated and then a subsequent predictive functional control design is proposed. The proposed controller is tested on both model match and model mismatch cases for comparison with previous controllers. Results show that control performance is improved. In addition, a linear programming method for constraints dealing and a closed form of transfer function representation of the control system are provided for further insight into the proposed method.

MSC:

93C55 Discrete-time control/observation systems
93B52 Feedback control
93B40 Computational methods in systems theory (MSC2010)
Full Text: DOI

References:

[1] Astrom, KJ and Wittenmark, B. 1997. Computer Controlled Systems: Theory and Design, , 3rd, Englewood Cliffs, NJ: Prentice-Hall.
[2] Balchen, JG, Ljungguist, D and Strand, S. 1992. State-space Predictive Control. Chemical Engineering Science, 47: 787-807. · doi:10.1016/0009-2509(92)80268-H
[3] Bitmead, RR, Gevers, M and Wertz, V. 1990. Adaptive Optimal Control: The Thinking Man’s GPC, New York, NY: Prentice Hall. · Zbl 0751.93052
[4] Brian Froisy, J. 2006. Model Predictive Control-building a Bridge between Theory and Practice. Computers and Chemical Engineering, 30: 1426-1435. · doi:10.1016/j.compchemeng.2006.05.044
[5] Chotai, A, Young, PC, Mckenna, PG and Tych, W. 1998. Proportional-integral-plus (PIP) Design for Delta Operator Systems: Parts 1 and 2. International Journal of Control, 70: 123-147, 149-168. · Zbl 0930.93033
[6] Clarke, DW, Mohtadi, C and Tuffs, PS. 1987. Generalized Predictive Control. Part 1: The Basic Algorithm. Part 2: Extensions and Interpretations. Automatica, 23: 137-160. · Zbl 0621.93032 · doi:10.1016/0005-1098(87)90087-2
[7] Cutler, CR. and Ramaker, B.L. (1980), ‘Dynamic Matrix Control—A Computer Control Algorithm’, in Proceedings of the Joint Automatic Control Conference, San Francisco, CA, 13-15 August, paper no. wp5-B, pp. 1-6
[8] Dubljevic, S. 2010. Model Predictive Control of Kuramoto-Sivashinsky Equation with State and Input Constraints. Chemical Engineering Science, 65: 4388-4396. · doi:10.1016/j.ces.2010.03.049
[9] Ebert, W. 2001. Optimal Filtered Predictive Control - A Delta Operator Approach. Systems and Control Letters, 42: 15, 69-80. · Zbl 0985.93021 · doi:10.1016/S0167-6911(00)00058-X
[10] Exadaktylos, V and Taylor, CJ. 2010. Multi-objective Performance Optimization for Model Predictive Control by Goal Attainment. International Journal of Control, 83: 1374-1386. · Zbl 1200.93090
[11] Exadaktylos, V, Taylor, CJ, Wang, L and Young, PC. 2009. Forward Path Model Predictive Control using a Non-minimal State Space Form. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 223: 353-369. · doi:10.1243/09596518JSCE674
[12] Garcia, CE and Morshedi, AM. 1986. Quadratic Programming Solution to Dynamic Matrix Control (QDMC). Chemical Engineering Communication, 46: 73-87.
[13] Gawthrop, PJ and Wang, L. 2006. Intermittent Predictive Control of an Inverted Pendulum. Control Engineering Practice, 14: 1347-1356. · doi:10.1016/j.conengprac.2005.09.002
[14] Gonzalez, AH, Adam, EJ, Marcovecchio, MG and Odloak, D. 2011. Application of an Extended IHMPC to an Unstable Reactor System: Study of Feasibility and Performance. Journal of Process Control, 21: 1493-1503. · doi:10.1016/j.jprocont.2011.05.011
[15] Grossmann, C, Ströhlein, G, Morari, M and Morbidelli, M. 2010. Optimizing Model Predictive Control of the Chromatographic Multi-column Solvent Gradient Purification (MCSGP) Process. Journal of Process Control, 20: 618-629. · doi:10.1016/j.jprocont.2010.02.013
[16] Jacob, NC and Dhib, R. 2011. Unscented Kalman Filter based Nonlinear Model Predictive Control of a LDPE Autoclave Reactor. Journal of Process Control, 21: 1332-1344. · doi:10.1016/j.jprocont.2011.06.013
[17] Kadali, R, Huang, B and Rossiter, A. 2003. A Data Driven Subspace Approach to Predictive Controller Design. Control Engineering Practice, 11: 261-278. · doi:10.1016/S0967-0661(02)00112-0
[18] Krauss, P, Dass, K and Rake, H. 1994. “Model-based Predictive Controller with Kalman Filtering for State Estimation”. In Advances in Model-based Predictive Control, Edited by: Clarke, DW. 69-83. Oxford: Oxford University Press. · Zbl 0809.93058
[19] Lauri, D, Rossiter, JA, Sanchis, J and Mart��nez, M. 2010. Data-driven Latent-variable Model-based Predictive Control for Continuous Processes. Journal of Process Control, 20: 1207-1219. · doi:10.1016/j.jprocont.2010.08.002
[20] Lee, JH, Morari, M and Garcia, CE. 1994. State-space Interpretation of Model Predictive Control. Automatica, 30: 707-717. · Zbl 0800.93025 · doi:10.1016/0005-1098(94)90159-7
[21] Lee, MJ, Taylor, CJ, Young, PC and Chotai, A. 1998. Modelling and PIP Control Design for Open Top Chambers. Control Engineering Practice, 6: 1209-1216. · doi:10.1016/S0967-0661(98)00065-3
[22] Maciejowski, JM. 2002. Predictive Control with Constraints, London: Prentice Hall.
[23] Mayne, DQ, Rawlings, JB, Rao, CV and Scokaert, POM. 2000. Constrained Model Predictive Control: Stability and Optimality. Automatica, 36: 789-814. · Zbl 0949.93003 · doi:10.1016/S0005-1098(99)00214-9
[24] Muske, K and Rawlings, JB. 1993a. Linear Model Predictive Control of Unstable Processes. Journal of Process Control, 3: 85-96. · doi:10.1016/0959-1524(93)80004-U
[25] Muske, K and Rawlings, JB. 1993b. Model Predictive Control with Linear Models. AIChE Journal, 39: 262-287. · doi:10.1002/aic.690390208
[26] Nagy, ZK, Mahn, B, Franke, R and Allgöwer, F. 2007. Evaluation Study of an Efficient Output Feedback Nonlinear Model Predictive Control for Temperature Tracking in an Industrial Batch Reactor. Control Engineering Practice, 15: 839-850. · doi:10.1016/j.conengprac.2006.05.004
[27] Oblak, S and Skrjanc, I. 2010. Continuous-time Wiener-model Predictive Control of a pH Process based on a PWL Approximation. Chemical Engineering Science, 65: 1720-1728. · doi:10.1016/j.ces.2009.11.008
[28] Pannocchia, G and Rawlings, J. 2003. Disturbance Models for Offset-free Model Predictive Control. AICHE Journal, 39: 262-287.
[29] Prakash, J, Patwardhan, SC and Shah, SL. 2010. State Estimation and Nonlinear Predictive Control of Autonomous Hybrid System using Derivative Free State Estimators. Journal of Process Control, 20: 787-799. · doi:10.1016/j.jprocont.2010.04.001
[30] Qin, SJ and Badgwell, TA. 2003. A Survey of Industrial Model Predictive Control Technology. Control Engineering Practice, 11: 733-764. · doi:10.1016/S0967-0661(02)00186-7
[31] Rawlings, JB. 2000. Tutorial Overview of Model Predictive Control. IEEE Control Systems Magazines, 20: 38-52. · doi:10.1109/37.845037
[32] Richalet, J. 1993. Industrial Application of Model based Predictive Control. Automatica, 29: 1251-1270. · doi:10.1016/0005-1098(93)90049-Y
[33] Ricker, NL. 1990. Model Predictive Control with State Estimation. Industrial and Engineering Chemistry Research, 29: 569-577. · doi:10.1021/ie00099a013
[34] Ricker, NL. (1991), ‘Model-predictive Control: State of the Art’, in Proceedings of the Fourth International Conference on Chemical Process Control, Padre Island, TX, 17-22 February, pp. 271-296
[35] Scheu, H and Marquardt, W. 2011. Sensitivity-based Coordination in Distributed Model Predictive Control. Journal of Process Control, 21: 715-728. · doi:10.1016/j.jprocont.2011.01.013
[36] Scokaert, PO and Rawlings, JB. 1998. Constrained Linear Quadratic Regulation. IEEE Transactions on Automatic Control, 43: 1163-1169. · Zbl 0957.93033 · doi:10.1109/9.704994
[37] Shead, LRE, Muske, KR and Rossiter, JA. 2010. Conditions for which Linear MPC Converges to the Correct Target. Journal of Process Control, 20: 1243-1251. · doi:10.1016/j.jprocont.2010.09.001
[38] Taylor, CJ, Chotai, A and Young, PC. 2000. State Space Control System Design based on Non-minimal State Variable Feedback: Further Generalization and Unification Results. International Journal of Control, 73: 1329-1345. · Zbl 0992.93032
[39] Taylor, CJ, Chotai, A and Young, PC. 2001. Design and Application of PIP Controllers: Robust Control of the IFAC93 Benchmark. Transactions of the Institute of Measurement and Control, 23: 183-200. · doi:10.1177/014233120102300304
[40] Taylor, CJ, McCabe, AP, Young, PC and Chotai, A. 2000. Proportional-Integral-Plus (PIP) Control of the Gasifier Benchmark System. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 214: 469-480. · doi:10.1243/0959651001540816
[41] Taylor, CJ and Shaban, EM. 2006. Multivariable Proportional-integral-plus (PIP) Control of the ALSTOM Nonlinear Gasifier Simulation. Proceedings of the Institution of Electrical Engineers, Control Theory and Applications, 153: 277-285. · doi:10.1049/ip-cta:20050058
[42] Tenny, MJ, Rawlings, JB and Wright, SJ. 2004. Closed-loop Behavior of Nonlinear Model Predictive Control. AICHE Journal, 50: 2142-2154. · doi:10.1002/aic.10177
[43] Vogel, EF. and Downs, J.J. (2002), ‘Industrial Experience with State-space Model Predictive Control’, in: Proceedings of the Sixth International Conference on Chemical Process Control, Tucson, AZ, 7-12 January 2001, eds. J.B. Rawlings, B.A. Ogunnaike and J.W. Eaton, New York, NY: CACHE, American Institute of Chemical Engineers, vol. 98, pp. 438-442
[44] Wang, C and Young, PC. 1988. Direct Digital Control by Input-Output State Variable Feedback: Theoretical Background. International Journal of Control, 747: 97-109. · Zbl 0635.93034
[45] Wang, L and Young, PC. 2006. An Improved Structure for Model Predictive Control using Non-minimal State Space Realization. Journal of Process Control, 16: 355-371. · doi:10.1016/j.jprocont.2005.06.016
[46] Young, PC, Behzadi, MA, Wang, CL and Chotai, A. 1987. Direct Digital and Adaptive Control by Input-output, State Variable Feedback. International Journal of Control, 46: 1861-1881. · Zbl 0634.93053
[47] Young, PC, Lee, MJ, Chotai, A, Tych, W and Chalabi, ZS. 1994. Modelling and PIP Control of a Glasshouse Micro-climate. Control Engineering Practice, 2: 591-604. · doi:10.1016/0967-0661(94)90003-5
[48] Young, PC and Willems, JC. 1972. An Approach to the Linear Multivariable Servomechanism Problem. International Journal of Control, 15: 961-975.
[49] Zhang, RD, Xue, AK and Wang, SQ. 2011a. Dynamic Modeling and Nonlinear Predictive Control based on Partitioned Model and Nonlinear Optimization. Industrial and Engineering Chemistry Research, 50: 8110-8121. · doi:10.1021/ie102211x
[50] Zhang, RD, Xue, AK, Wang, SQ and Ren, ZY. 2011b. An Improved Model Predictive Control Approach based on Extended Non-minimal State Space Formulation. Journal of Process Control, 21: 1183-1192. · doi:10.1016/j.jprocont.2011.06.009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.