×

Stabilization of wind farm integrated transmission system with input delay. (English) Zbl 1525.93297


MSC:

93C95 Application models in control theory
93C15 Control/observation systems governed by ordinary differential equations
93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory
93C10 Nonlinear systems in control theory
93C40 Adaptive control/observation systems
35Q93 PDEs in connection with control and optimization

References:

[1] T. An, G. Tang, W. Wang, Research and application on multi-terminal and DC grids based on VSC-HVDC technology in China, <i>High Volt.</i>, <b>2</b> (2017), 1-10.
[2] Y. F. Guo, H. L. Gao, Q. W. Wu, H. R. Zhao, J. Ostergaard, M. Shahidehpour, Enhanced voltage control of VSC-HVDC connected offshore wind farms based on model predictive control, <i>IEEE T. Sustain. Energ.</i>, <b>9</b> (2018), 474-487.
[3] H. Z. Liu, Z. Chen, Contribution of VSC-HVDC to frequency regulation of power systems with offshore wind generation, <i>IEEE T. Energy Conver.</i>, <b>30</b> (2015), 918-926.
[4] J. Lin, Integrating the first HVDC-based offshore wind power into PJM system-A real project case study, <i>IEEE T. Ind. Appl.</i>, <b>52</b> (2016), 1970-1978.
[5] B. B. Shao, S. Q. Zhao, Y. H. Yang, B. F. Gao, F. Blaabjerg, Sub-synchronous oscillation characteristics and analysis of direct-drive wind farms with VSC-HVDC systems, <i>IEEE T. Sustain. Energ.</i>, <b>12</b> (2021), 1127-1140.
[6] S. B. Wang, X. Y. Meng, T. W. Chen, Wide-area control of power systems through delayed network communication, <i>IEEE T. Contr. Syst. T.</i>, <b>20</b> (2012), 495-503.
[7] B. Chaudhuri, R. Majumder, B. C. Pal, Wide-area measurement-based stabilizing control of power system considering signal transmission delay, <i>IEEE T. Power Syst.</i>, <b>19</b> (2004), 1971-1979.
[8] B. Yang, Y. Z. Sun, Damping factor based delay margin for wide area signals in power system damping control, <i>IEEE T. Power Syst.</i>, <b>28</b> (2013), 3501-3502.
[9] M. Li, Y. Chen, Wide-area stabiliser on sliding mode control for cross-area power systems with random delay and packet dropouts, <i>Asian J. Control</i>, <b>20</b> (2018), 2130-2142. · Zbl 1407.93087
[10] K. T. Yu, Y. M. Li, Adaptive fuzzy control for nonlinear systems with sampled data and time-varying input delay, <i>AIMS Mathematics</i>, <b>5</b> (2020), 2307-2325. · Zbl 1484.93013
[11] D. Yang, X. D. Li, J. L. Qiu, Output tracking control of delayed switched systems via state-dependent switching and dynamic output feedback, <i>Nonlinear Anal.-Hybri.</i>, <b>32</b> (2019), 294-305. · Zbl 1425.93149
[12] X. Y. Yang, X. D. Li, Q. Xi, P. Y. Duan, Review of stability and stabilization for impulsive delayed systems, <i>Math. Biosci. Eng.</i>, <b>15</b> (2018), 1495-1515. · Zbl 1416.93159
[13] W. W. Sun, M. Y. Qiu, X. Y. Lv, \(H_\infty\) filter design for a class of delayed Hamiltonian systems with fading channel and sensor saturation, <i>AIMS Mathematics</i>, <b>5</b> (2020), 2909-2922. · Zbl 1484.93022
[14] Y. Liu, N. Chopra, Gravity-compensation-driven position regulation for robotic systems under input/output delays, <i>IEEE T. Contr. Syst. T.</i>, <b>22</b> (2014), 995-1005.
[15] S. Ahmed, H. P. Wang, M. S. Aslam, I. Ghous, I. Qaisar, Robust adaptive control of robotic manipulator with input time-varying delay, <i>Int. J. Control, Autom. Syst.</i>, <b>17</b> (2019), 2193-2202.
[16] Y. Kang, Z. J. Li, X. Q. Cao, D. H. Zhai, Robust control of motion/force for robotic manipulators with random time delays, <i>IEEE T. Contr. Syst. T.</i>, <b>21</b> (2013), 1708-1718.
[17] Q. He, J. K. Liu, An observer for a velocity-sensorless VTOL aircraft with time-varying measurement delay, <i>Int. J. Syst. Sci.</i>, <b>47</b> (2016), 652-661. · Zbl 1333.93057
[18] S. W. Su, Y. Lin, Output tracking control for a velocity-sensorless VTOL aircraft with measurement delays, <i>Int. J. Syst. Sci.</i>, <b>46</b> (2015), 885-895. · Zbl 1312.93056
[19] X. J. Jin, G. D. Yin, Y. J. Li, J. Q. Li, Stabilizing vehicle lateral dynamics with considerations of state delay of AFS for electric vehicles via robust gain-scheduling control, <i>Asian J. Control</i>, <b>18</b> (2016), 89-97. · Zbl 1338.93321
[20] M. Z. Huang, W. N. Gao, Z. P. Jiang, Connected cruise control with delayed feedback and disturbance: An adaptive dynamic programming approach, <i>Int. J. Adapt. Control.</i>, <b>33</b> (2019), 356-370. · Zbl 1417.93219
[21] S. Y. Han, G. Y. Tang, Y. H. Chen, X. X. Yang, X. Yang, Optimal vibration control for vehicle active suspension discrete-time systems with actuator time delay, <i>Asian J. Control</i>, <b>15</b> (2013), 1579-1588. · Zbl 1283.49046
[22] D. Soudbakhsh, A. Chakrabortty, A. M. Annaswamy, A delay-aware cyber-physical architecture for wide-area control of power systems, <i>Control Eng. Pract.</i>, <b>60</b> (2017), 171-182.
[23] D. Efimov, J. Schiffer, R. Ortega, Robustness of delayed multistable systems with application to droop-controlled inverter-based microgrids, <i>Int. J. Control</i>, <b>89</b> (2016), 909-918. · Zbl 1338.93333
[24] J. Li, Z. H. Chen, D. S. Cai, W. Zhen, Q. Huang, Delay-dependent stability control for power system with multiple time-delays, <i>IEEE T. Power Syst.</i>, <b>31</b> (2016), 2316-2326.
[25] X. Li, R. Wang, S. Wu, S. N. Wu, G. M. Dimirovski, Exponential stability for multi-area power systems with time delays under load frequency controller failures, <i>Asian J. Control</i>, <b>19</b> (2017), 787-791. · Zbl 1365.93427
[26] H. Luo, I. A. Hiskens, Z. Hu, Stability analysis of load frequency control systems with sampling and transmission delay, <i>IEEE T. Power Syst.</i>, <b>35</b> (2020), 3603-3615.
[27] S. P. Wen, X. H. Yu, Z. G. Zeng, J. J. Wang, Event-triggering load frequency control for multiarea power systems with communication delays, <i>IEEE T. Ind. Electron.</i>, <b>63</b> (2016), 1308-1317.
[28] Y. H. Gui, C. H. Kim, C. C. Chung, Improved low-voltage ride through capability for PMSG wind turbine based on port-controlled hamiltonian system, <i>Int. J. Control Autom. Syst.</i>, <b>14</b> (2016), 1195-1204.
[29] H. H. Song, Y. B. Qu, Energy-based modelling and control of wind energy conversion system with DFIG, <i>Int. J. Control</i>, <b>84</b> (2011), 281-292. · Zbl 1221.93202
[30] W. W. Sun, Y. Wu, L. P. Wang, Trajectory tracking of constrained robotic systems via a hybrid control strategy, <i>Neurocomputing</i>, <b>330</b> (2019), 188-195.
[31] Y. Ren, W. W. Sun, Robust adaptive control for robotic systems with input time-varying delay using Hamiltonian method, <i>IEEE/CAA J. Automat.</i>, <b>5</b> (2018), 852-859.
[32] Y. Guo, Z. Xi, D. Cheng, Speed regulation of permanent magnet synchronous motor via feedback dissipative Hamiltonian realisation, <i>IET Control Theory A.</i>, <b>1</b> (2007), 281-290.
[33] A. Yaghmaei, M. J. Yazdanpanah, Structure preserving observer design for port-Hamiltonian systems, <i>IEEE T. Automat. Contr</i>, <b>64</b> (2019), 1214-1220. · Zbl 1482.93259
[34] X. M. Fan, L. Guan, C. J. Xia, T. Y. Ji, IDA-PB control design for VSC-HVDC transmission based on PCHD model, <i>Int. T. Electr. Energy.</i>, <b>25</b> (2015), 2133-2143.
[35] S. Y. Dai, X. F. Koutsoukos, Safety analysis of integrated adaptive cruise and lane keeping control using multi-modal port-Hamiltonian systems, <i>Nonlinear Anal.-Hybri.</i>, <b>35</b> (2020), 100816. · Zbl 1433.93054
[36] S. Aoues, F. L. Cardoso-Ribeiro, D. Matignon, D. Alazard, Modeling and control of a rotating flexible spacecraft: A port-Hamiltonian approach, <i>IEEE T. Contr. Syst. T.</i>, <b>27</b> (2019), 355-362.
[37] W. W. Sun, B. Z. Fu, Adaptive control of time-varying uncertain nonlinear systems with input delay: A Hamiltonian approach, <i>IET Control Theory A.</i>, <b>10</b> (2016), 1844-1858.
[38] W. W. Sun, X. Y. Lv, K. L. Wang, L. P. Wang, Observer-based output feedback stabilisation and \(L_2\)-disturbance attenuation of uncertain Hamiltonian systems with input and output delays, <i>Int. J. Syst. Sci.</i>, <b>50</b> (2019), 2565-2578. · Zbl 1483.93496
[39] J. Schiffer, E. Fridman, R. Ortega, J. Raischde, Stability of a class of delayed port-Hamiltonian systems with application to microgrids with distributed rotational and electronic generation, <i>Automatica</i>, <b>74</b> (2016), 71-79. · Zbl 1348.93213
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.