×

Analytical and numerical study of the expansion effect on the velocity deficit of rotating detonation waves. (English) Zbl 1519.80137

MSC:

80A25 Combustion
76V05 Reaction effects in flows

References:

[1] Voitsekhovskii, B., Maintained detonations, Sov. J. Appl. Mech. Tech. Phys., 3, 157-164 (1960)
[2] Bykovskii, F. A.; Zhdan, S. A.; Vedernikov, E. F., Continuous spin detonations, J. Propuls. Power, 22, 1204-1216 (2006) · doi:10.2514/1.17656
[3] Frolov, S. M.; Aksenov, V. S.; Ivanov, V. S.; Shamshin, I. O., Large-scale hydrogen-air continuous detonation combustor, Int. J. Hydrog. Energy, 40, 1616-1623 (2015) · doi:10.1016/j.ijhydene.2014.11.112
[4] Kindracki, J.; Wolański, P.; Gut, Z., Experimental research on the rotating detonation in gaseous fuels-oxygen mixtures, Shock Waves, 21, 75-84 (2011) · doi:10.1007/s00193-011-0298-y
[5] Anand, V.; St. George, A.; Driscoll, R.; Gutmark, E., Analysis of air inlet and fuel plenum behavior in a rotating detonation combustor, Exp. Therm. Fluid Sci., 70, 408-416 (2016) · doi:10.1016/j.expthermflusci.2015.10.007
[6] Rankin, B. A.; Richardson, D. R.; Caswell, A. W.; Naples, A. G.; Hoke, J. L.; Schauer, F. R., Chemiluminescence imaging of an optically accessible non-premixed rotating detonation engine, Combust. Flame, 176, 12-22 (2017) · doi:10.1016/j.combustflame.2016.09.020
[7] Falempin, F.; Le Naour, B.; Miquel, F., Recent experimental results obtained on continuous detonation wave engine, 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, 2011-2235 (2011)
[8] Hansmetzger, S.; Zitoun, R.; Vidal, P., Detonation regimes in a small-scale RDE, 26th International Colloquium on the Dynamics of Explosions and Reactive Systems, 6 (2017)
[9] Kato, Y., Ishihara, K., Matsuoka, K., Kasahara, J., Matsuo, A. and Funaki, I., Study of combustion chamber characteristic length in rotating detonation engine with convergent-divergent nozzle (2016).
[10] Yang, C.; Wu, X.; Ma, H.; Peng, L.; Gao, J., Experimental research on initiation characteristics of a rotating detonation engine, Exp. Therm. Fluid Sci., 71, 154-163 (2016) · doi:10.1016/j.expthermflusci.2015.10.019
[11] Ma, Z.; Zhang, S.; Luan, M.; Yao, S.; Xia, Z.; Wang, J., Experimental research on ignition, quenching, reinitiation and the stabilization process in rotating detonation engine, Int. J. Hydrog. Energy, 43, 18521-18529 (2018) · doi:10.1016/j.ijhydene.2018.08.064
[12] Liu, M.; Zhang, S.; Wang, J.; Chen, Y., Parallel three-dimensional numerical simulation of rotating detonation engine on graphics processing units, Comput. Fluids, 110, 36-42 (2015) · Zbl 1390.76682 · doi:10.1016/j.compfluid.2014.11.017
[13] Hishida, M.; Fujiwara, T.; Wolanski, P., Fundamentals of rotating detonations, Shock Waves, 19, 1-10 (2009) · Zbl 1255.76146 · doi:10.1007/s00193-008-0178-2
[14] Schwer, D.; Kailasanath, K., Numerical investigation of the physics of rotating-detonation-engines, Proc. Combust. Inst., 33, 2195-2202 (2011) · doi:10.1016/j.proci.2010.07.050
[15] Uemura, Y.; Hayashi, A. K.; Asahara, M.; Tsuboi, N.; Yamada, E., Transverse wave generation mechanism in rotating detonation, Proc. Combust. Inst., 34, 1981-1989 (2013) · doi:10.1016/j.proci.2012.06.184
[16] Tsuboi, N.; Eto, S.; Hayashi, A. K.; Kojima, T., Front cellular structure and thrust performance on hydrogen-oxygen rotating detonation engine, J. Propuls. Power, 33, 100-111 (2017) · doi:10.2514/1.B36095
[17] Fujii, J.; Kumazawa, Y.; Matsuo, A.; Nakagami, S.; Matsuoka, K.; Kasahara, J., Numerical investigation on detonation velocity in rotating detonation engine chamber, Proc. Combust. Inst., 36, 2665-2672 (2017) · doi:10.1016/j.proci.2016.06.155
[18] Zhou, R.; Wang, J.-P., Numerical investigation of flow particle paths and thermodynamic performance of continuously rotating detonation engines, Combust. Flame, 159, 3632-3645 (2012) · doi:10.1016/j.combustflame.2012.07.007
[19] Nordeen, C.A., Thermodynamics of a rotating detonation engine, Doctoral Dissertations, University of Connecticut, 2013.
[20] Bellenoue, M.; Boust, B.; Vidal, P.; Zitoun, R.; Gaillard, T.; Davidenko, D., New combustion concepts to enhance the thermodynamic efficiency of propulsion engines, Aerospace Lab, 11-12, 11, 13 (2016)
[21] Fievisohn, R. T.; Yu, K. H., Steady-state analysis of rotating detonation engine flowfields with the method of characteristics, J. Propuls. Power, 33, 89-99 (2017) · doi:10.2514/1.B36103
[22] Sousa, J.; Braun, J.; Paniagua, G., Development of a fast evaluation tool for rotating detonation combustors, Appl. Math. Model., 52, 42-52 (2017) · Zbl 1480.74257 · doi:10.1016/j.apm.2017.07.019
[23] Fujiwara, T.; Tsuge, S., Quasi-onedimensional analysis of gaseous free detonations, J. Phys. Soc. Jpn., 33, 237-241 (1972) · doi:10.1143/JPSJ.33.237
[24] Tsugé, S.-I.-C.; Fujiwara, T., On the propagation velocity of a detonation-shock combined wave, ZAMM - J. Appl. Math. Mech. Z. Für Angew. Math. Mech., 54, 157-164 (1974) · doi:10.1002/zamm.19740540305
[25] Ma, F.; Choi, J.-Y.; Yang, V., Thrust chamber dynamics and propulsive performance of single-tube pulse detonation engines, J. Propuls. Power, 21, 512-526 (2005) · doi:10.2514/1.7393
[26] Taki, S.; Fujiwara, T., Numerical analysis of two-dimensional nonsteady detonations, AIAA J., 16, 73-77 (1978) · doi:10.2514/3.60859
[27] Anderson, J. D. Jr., Hypersonic and high-temperature gas dynamics (2006), American Institute of Aeronautics and Astronautics: American Institute of Aeronautics and Astronautics, Reston, VA
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.