×

Note on a cubically convergent Newton-type method under weak conditions. (English) Zbl 1198.41010

The main result of the paper is contained in Theorem2,where the authors prove that the convergence order of the predictor-corrector type iterative method free from second derivatives proposed by Fang et al. is in general two, not three as claimed in L. Fang, G. He and Z. Hu [J. Comput. Appl. Math. 220, No. 1–2, 409–412 (2008; Zbl 1146.65042)]. Next, a scheme to increase the convergence order is constructed (in Section 3), several numerical examples are presented (in Section 4). Finally, some multi-steps mathods with higher-order convergence are discussed (in Section 5).

MSC:

41A25 Rate of convergence, degree of approximation

Citations:

Zbl 1146.65042
Full Text: DOI

References:

[1] Fang, L., He, G., Hu, Z.: A cubically convergent Newton-type method under weak conditions. J. Comput. Appl. Math. 220, 409–412 (2008) · Zbl 1146.65042 · doi:10.1016/j.cam.2007.08.013
[2] Ostrowski, A.M.: Solution of Equations in Euclidean and Banach Space, 3rd edn. Academic, New York (1973) · Zbl 0304.65002
[3] Traub, J.F.: Iterative Methods for the Solution of Equations. Chelsea, New York (1977) · Zbl 0383.68041
[4] Kahya, E.: A class of exponential quadratically convergent iterative formulae for unconstrained optimization. Appl. Math. Comput. 186, 1010–1017 (2007) · Zbl 1121.65067 · doi:10.1016/j.amc.2006.08.040
[5] Li, Z.H., Zhang, H.X.: Study on gas kinetic unified algorithm for flows from rarefied transition to continuum. J. Comput. Phys. 193, 708–738 (2004) · Zbl 1109.76349 · doi:10.1016/j.jcp.2003.08.022
[6] Gutiérrez, J.M., Hernández, M.A.: An acceleration of Newton’s method: Super-Halley method. Appl. Math. Comput. 117, 223–239 (2001) · Zbl 1023.65051 · doi:10.1016/S0096-3003(99)00175-7
[7] Grau, M., Díaz-Barrreo, J.L.: An improvement of the Euler–Chebyshev iterative method. J. Math. Anal. Appl. 315, 1–7 (2006) · Zbl 1113.65048 · doi:10.1016/j.jmaa.2005.09.086
[8] Wu, P., Han, D.: A family of iterative methods with higher-order convergence. Appl. Math. Comput. 182, 1474–1477 (2006)
[9] Homeier, H.H.H.: On Newton-type methods with cubic convergence. J. Comput. Appl. Math. 176, 425–432 (2005) · Zbl 1063.65037 · doi:10.1016/j.cam.2004.07.027
[10] Kou, J., Li, Y., Wang, X.: On modified Newton methods with cubic convergence. Appl. Math. Comput. 176, 123–127 (2006) · Zbl 1108.65048 · doi:10.1016/j.amc.2005.09.052
[11] Nedzhibov, G.H., Hasanov, V.I., Petkov, M.G.: On some families of multi-point methods for solving nonlinear equations. Numer. Algorithms 42, 127–136 (2006) · Zbl 1117.65067 · doi:10.1007/s11075-006-9027-5
[12] Chun, C.: Construction of third-order modifications of Newton’s method. Appl. Math. Comput. 189, 662–668 (2007) · Zbl 1122.65325 · doi:10.1016/j.amc.2006.11.127
[13] Frontini, M., Sormani, E.: Some variants of Newton’s method with third-order convergence. Appl. Math. Comput. 140, 419–426 (2003) · Zbl 1037.65051 · doi:10.1016/S0096-3003(02)00238-2
[14] Weerakoom, S., Fernando, T.G.I.: A variant of Newton’s method with accelerated third-order convergence. Appl. Math. Lett. 13, 87–93 (2000) · Zbl 0973.65037 · doi:10.1016/S0893-9659(00)00100-2
[15] Wang, H.: On new third-order convergent iterative formulas. Numer. Algorithms 48, 317–325 (2008) · Zbl 1149.65037 · doi:10.1007/s11075-008-9204-9
[16] Kanwar, V., Tomar, S.K.: Modified families of Newton, Halley and Chebyshev methods. Appl. Math. Comput. 192, 20–26 (2007) · Zbl 1193.65065 · doi:10.1016/j.amc.2007.02.119
[17] Wu, X.: A new continuation Newton-like method and its deformation. Appl. Math. Comput. 112, 75–78 (2000) · Zbl 1023.65043 · doi:10.1016/S0096-3003(99)00049-1
[18] Gsiydvjo, W.: Numerical Analysis: An Introduction. Birkäuser, Basel (1997)
[19] Chun, C., Kim, Y.: Several new third-order iterative methods for solving nonlinear equations. Acta Appl. Math. (2008). doi: 10.1007/s10440-008-9359-3 · Zbl 1195.41015
[20] Amat, S., Busqiier, S., Gutiérrez, J.M.: Geometric constructions of iterative functions to solve nonlinear equations. J. Comput. Appl. Math. 157, 197–205 (2003) · Zbl 1024.65040 · doi:10.1016/S0377-0427(03)00420-5
[21] Buff, X., Henriksen, C.: On the König root-finding algorithms. Nonlinearity 16, 989–1015 (2003) · Zbl 1030.37030 · doi:10.1088/0951-7715/16/3/312
[22] King, R.: A family of fourth order methods for nonlinear equations. SIAM J. Numer. Anal. 10, 976–879 (1973) · Zbl 0266.65040 · doi:10.1137/0710072
[23] Plaza, S.: Conjugacy classes of same numerical methods. Proyecciones 20, 1–17 (2001) · doi:10.4067/S0716-09172001000100001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.